• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020
仇逊超, 曹军. 基于改进的C-V模型的东北松子外部品质等级检测研究[J]. 食品工业科技, 2016, (11): 289-292. DOI: 10.13386/j.issn1002-0306.2016.11.051
引用本文: 仇逊超, 曹军. 基于改进的C-V模型的东北松子外部品质等级检测研究[J]. 食品工业科技, 2016, (11): 289-292. DOI: 10.13386/j.issn1002-0306.2016.11.051
QIU Xun-chao, CAO Jun. A research of the external quality grading detection for northeastern pine nuts based on improved C- V model[J]. Science and Technology of Food Industry, 2016, (11): 289-292. DOI: 10.13386/j.issn1002-0306.2016.11.051
Citation: QIU Xun-chao, CAO Jun. A research of the external quality grading detection for northeastern pine nuts based on improved C- V model[J]. Science and Technology of Food Industry, 2016, (11): 289-292. DOI: 10.13386/j.issn1002-0306.2016.11.051

基于改进的C-V模型的东北松子外部品质等级检测研究

A research of the external quality grading detection for northeastern pine nuts based on improved C- V model

  • 摘要: 提出了东北松子外部品质的无损等级划分方法。利用CCD相机获取松子图像,采用改进的C-V模型实现松子轮廓特征的提取;利用数学形态学的方法,提取松子的果长、横径特征参数,并与实际测量值间构建数学模型;根据提取出的特征参数,建立松子外部品质综合等级评定标准。实验结果表明,采用本文方法能够实现同时对多个东北松子外部品质的等级划分,且划分的平均准确率为97.2%。 

     

    Abstract: A nondestructive gradation method has been introduced for the external quality of northeastern pine nuts in this paper.Images of pine nuts were got by a CCD camera with improved C-V model to extract contour features.Feature parameters of pine nuts ' length and width were extracted by the method of mathematical morphology,and according to those and the measured values the mathematical model was established,and a comprehensive evaluation standard for the external quality of pine nuts grade was established too.The results were demonstrated that the external quality of multiple northeastern pine nuts could be graded simultaneously by the method in this paper with the accuracy of 97.2%.

     

/

返回文章
返回