Isolation and characterization of fenvalerate degrading strain and optimization of degradation conditions
-
摘要: 采用富集培养法从喷施拟除虫菊酯类农药的菜园土壤中,分离得到一株能降解氰戊菊酯的细菌BFE-023。经生理生化和16S r DNA序列分析,将菌株BFE-023鉴定为地衣芽孢杆菌(Bacillus licheniformis)。应用Plackett-Burman实验设计确定了影响该菌株降解氰戊菊酯的主要影响因素,利用响应面分析法优化了其降解条件。在优化条件下,研究菌株BFE-023对氰戊菊酯的降解过程及其中间产物3-苯氧基苯甲酸(3-PBA)的生成规律。结果表明,培养时间和降解体系中氰戊菊酯浓度及氯化铁含量是影响其降解的主要因素,优化条件下60 h内对氰戊菊酯降解率可达到88.71%,与所建立的模型预测值(88.78%)相吻合。菌株BEF-023降解氰戊菊酯的过程中,降解中间产物3-PBA的生成量呈现先明显增加后逐渐减少的趋势,说明菌株BEF-023可能具备继续降解中间产物3-PBA的能力。Abstract: Bacterial strain BFE-023 with high ability to degrade fenvalerate was isolated from garden soil which contaminated by pyrethroid pesticides. According to physiological and biochemical characteristics and 16 S r DNA sequence,the bacterial strain was identified as Bacillus licheniformis. The main factors influencing fenvalerate degradation were confirmed by using Plackett-Burman design,and the degradation condition was optimized with response surface method. Under the optimal conditions,the degradation of fenvalerate and the generation of 3- phenoxy benzoic acid( 3- PBA) were researched. The results showed that fenvalerate concentration,incubation time and ferric chloride content were the major factors which influencing fenvalerate degradation. In addition,the degradation rate of fenvalerate under the optimized conditions in 60 h reached88.71%,which was similar to predictive value from response surface model(88.78%). The concentration of 3-PBA in the degradation system of fenvalerate was increased obviously at first and then decreased gradually. It was proved that the strain BFE-023 could degrade the intermediate 3-PBA.
-
[1] GIRI S,SHARMA G D,GIRI A,et al.Fenvalerate-induced chromosome aberrations and sister chromatid exchanges in the bone marrow cells of mice in vivo[J].Mutat Res,2002,520(1-2):125-132.
[2] TRIPATHI G,VERMA P.Fenvalerate-induced changes in a catfish.clarias batrachus:Metabolic enzymes,RNA and protein[J].C-omp Biochem Physiol,C:Pharmacol Toxicol,2004,138(1):75-79.
[3] Al-Makkawy H K,Madbouly M D.Persistence and accumulation of some organic insecticides in Nile water and fish resources[J].Conservation and Recycling,1999,27(1-2):105-115.
[4] Kolaczinski J H,Curtis C F.Chronic illness as a result of low-level exposure to synthetic pyrethroid insecticides:A review of the debate[J].Food and Chemical Toxicology,2004,42(5):697-706.
[5] Singh B K,Walker A.Microbial degradation of organophorus compounds[J].FEMS Microbiology Reviews,2006,30(3):428-471.
[6] Maloney S E,Maule A,Smith A R.Purification and preliminary characterization of permethrinase from a pyrethroid-transforming strain of Bacillus cereus[J].Applied and Environmental Microbiology,1993,59(7):2007-2013.
[7] 虞云龙,陈鹤鑫,樊德方,等.拟除虫菊酯类杀虫剂的酶促降解[J].环境科学,1998,19(3):66-69. [8] Tallur P N,Megadi V B,Ninnekar H Z.Biodegradation of cypermethrin by Micrococcus sp.strain CPN1[J].Biodegradation,2008,19(1):77-82.
[9] Guo P,Wang B Z,Hang B J,et al.Pyrethroid degrading Sphingobium sp.JZ-2 and the purication and characterization of a novel pyrethroid hydrolase[J].International Biodeterioration&Biodegradation,2009,63(8):1107-1107.
[10] 虞云龙,宋风鸣,郑重,等.一株广谱农药降解菌(Alcaligenes sp)分离与鉴定[J].浙江农业大学学报,1997,23(2):111-115. [11] Liang W Q,Wang Z Y,Li H,et al.Purification and characterization of a novel pyrethroid hydrolase from Aspergillus niger ZD11[J].Journal of Agricultural and Food Chemistry,2005,53(19):7415-7420.
[12] 田盼.氰戊菊酯降解菌的筛选及其降解酶的初步纯化[D].福州:福建农林大学,2009. [13] 刘书亮,姚开,贾冬英,等.HPLC法检测米曲霉降解体系中氯氰菊酯前处理方法的研究[J].四川大学学报,2011,43(4):179-183. [14] Jie Tang,Kai Yao,Shuliang Liu,et al.Biodegradation of 3-phenoxybenzoic acid by a novel sphingomonas sp.SC-1[J].Fresenius Environmental Bulletin,2013,22(5a):1564-1572.
[15] Chen S,Luo J,Hu M,et al.Enhancement of cypermethrin degradation by a coculture of Bacillus cereus ZH-3 and Streptomyces aureus HP-S-01[J].Bioresource Technology,2012,110(2):97-104.
[16] 布坎南R E,吉本斯N E.伯杰细菌鉴定手册[M].第8版.中国科学院微生物研究所《伯杰细菌鉴定手册》翻译组,译.北京:科学出版社,1984:729-732. [17] 刘君寒,王兆守,何健,等.一株氯氰菊酯降解菌的分离和鉴定[J].南京农业大学学报,2007,30(3):68-72. [18] 顾宝群.氯氰菊醋降解菌的筛选及降解特性研究[D].南宁:广西大学,2006. [19] 张丽萍,徐莲,吴莹,等.氯氰菊酯降解菌的筛选鉴定及其降解特性研究[J].生态与农村环境学报,2009,25(3):67-72. [20] Reddy L,Wee Y J,Yun J S,et al.Optimization of alkaline protease production by batch culture of Bacillus sp.RKY3through Plackett-Burman and response surface methodological approaches[J].Bioresource Technology,2008,99(7):2242-2249.
[21] 阎金勇,杨江科,闫云君.单因子-响应面法优化白地霉Y162产脂肪酶条件[J].中国生物工程杂志,2007,27(8):69-75. [22] 赖文.氯氰菊酯降解菌的筛选、降解条件优化及其酶纯化研究[D].雅安:四川农业大学,2011. [23] 于晓菲,夏清风,金朝霞.高效氯氰菊酯降解菌的筛选及其降解特性[J].大连工业大学学报,2013,32(6):417-421. [24] 刘芳芳,迟原龙,喻志强,等.表面活性剂对地衣芽孢杆菌B-1降解β-氯氰菊酯的影响[J].食品科技,2015,40(1):10-13. [25] 胡尚勤,刘天贵.地衣芽孢杆菌营养要求的研究[J].河北省科学院学报,2000,17(4):224-227. [26] 方晓航,仇荣亮.农药在土壤环境中的行为研究[J].土壤与环境,2002,11(1):94-97. [27] 秦坤,朱鲁生,王金花.氯氰菊酯降解真菌的筛选及其降解特性研究[J].环境工程学报,2010,4(4):950-954.
计量
- 文章访问数: 165
- HTML全文浏览量: 25
- PDF下载量: 271