• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020
周俊, 张军, 谢梦圆, 陈哲, 汪勇, 关贺元. 应用主成分和判别分析的红外光谱法快速鉴别酸败植物油[J]. 食品工业科技, 2015, (12): 53-56. DOI: 10.13386/j.issn1002-0306.2015.12.002
引用本文: 周俊, 张军, 谢梦圆, 陈哲, 汪勇, 关贺元. 应用主成分和判别分析的红外光谱法快速鉴别酸败植物油[J]. 食品工业科技, 2015, (12): 53-56. DOI: 10.13386/j.issn1002-0306.2015.12.002
ZHOU Jun, ZHANG Jun, XIE Meng-yuan, CHEN Zhe, WANG Yong, GUAN He-yuan. Rapid authentication of rancid edible oil based on fourier transform infrared spectroscopy of principal component and discrimination analysis[J]. Science and Technology of Food Industry, 2015, (12): 53-56. DOI: 10.13386/j.issn1002-0306.2015.12.002
Citation: ZHOU Jun, ZHANG Jun, XIE Meng-yuan, CHEN Zhe, WANG Yong, GUAN He-yuan. Rapid authentication of rancid edible oil based on fourier transform infrared spectroscopy of principal component and discrimination analysis[J]. Science and Technology of Food Industry, 2015, (12): 53-56. DOI: 10.13386/j.issn1002-0306.2015.12.002

应用主成分和判别分析的红外光谱法快速鉴别酸败植物油

Rapid authentication of rancid edible oil based on fourier transform infrared spectroscopy of principal component and discrimination analysis

  • 摘要: 通过收集并分析40个合格植物油和44个酸败植物油的傅里叶变换红外光谱,选取25个合格植物油和39个酸败植物油组成训练集,利用主成分分析获得累积可信度95%的三个主成分及对应的17431710cm-1、11721130cm-1、29452844cm-1、17281689cm-1、29872840cm-1和17311660cm-1对植物油酸败最为敏感的光谱波数范围。在主成分分析的基础上,选取对植物油酸败敏感的波段,利用训练集建立鉴别植物油酸败判别分析模型。采用验证集20个样品验证判别分析模型,判别正确率达100%。主成分结合判别分析的红外光谱法能快速、准确、无损地区分合格植物油和酸败植物油。 

     

    Abstract: 40 qualified edible oils and 44 rancid ones were collected and analyzed. 25 qualified edible oils and39 rancid ones were selected to compose training set. Principal component analysis (PCA) was used to compress thousands of spectral data into several variables and describe the body of spectra, the analysis suggested that the accumulate reliabilities of PC1, PC2 and PC3 (the first three principle components) were more than 95%and corresponding 17431710cm-1, 11721130cm-1, 29452844cm-1, 17281689cm-1, 2987 2840cm-1and1731 1660cm-1were the most sensitive bands for edible oil rancidity. The training set was used to build discrimination analysis (DA) model, and then the most sensitive bands were applied as DA model inputs. The model was validated by other 20 samples as validation set with the correct recognition rate of 100%, which showed this method could be used to distinguish the rancid edible oil rapidly, accurately and soundly.

     

/

返回文章
返回