• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

地衣芽孢杆菌TJ-101发酵制备β-甘露聚糖酶的过程优化

尤生萍, 韩健, 齐崴, 苏荣欣, 何志敏

尤生萍, 韩健, 齐崴, 苏荣欣, 何志敏. 地衣芽孢杆菌TJ-101发酵制备β-甘露聚糖酶的过程优化[J]. 食品工业科技, 2015, (02): 195-198. DOI: 10.13386/j.issn1002-0306.2015.02.033
引用本文: 尤生萍, 韩健, 齐崴, 苏荣欣, 何志敏. 地衣芽孢杆菌TJ-101发酵制备β-甘露聚糖酶的过程优化[J]. 食品工业科技, 2015, (02): 195-198. DOI: 10.13386/j.issn1002-0306.2015.02.033
YOU Sheng-ping, HAN Jian, QI Wei, SU Rong-xin, HE Zhi-min. Optimization of fermentation process for the production of β-mannanase by Bacillus licheniformis TJ-101[J]. Science and Technology of Food Industry, 2015, (02): 195-198. DOI: 10.13386/j.issn1002-0306.2015.02.033
Citation: YOU Sheng-ping, HAN Jian, QI Wei, SU Rong-xin, HE Zhi-min. Optimization of fermentation process for the production of β-mannanase by Bacillus licheniformis TJ-101[J]. Science and Technology of Food Industry, 2015, (02): 195-198. DOI: 10.13386/j.issn1002-0306.2015.02.033

地衣芽孢杆菌TJ-101发酵制备β-甘露聚糖酶的过程优化

基金项目: 

国家自然科学基金项目(20976125); 天津市科技支撑计划项目(05YFGZGX04600);

详细信息
    作者简介:

    尤生萍 (1988-) , 男, 硕士研究生, 主要从事发酵工程方面的研究。;

    齐崴 (1973-) , 女, 博士研究生, 教授, 主要从事酶工程与生物催化方面的研究。;

  • 中图分类号: TQ925

Optimization of fermentation process for the production of β-mannanase by Bacillus licheniformis TJ-101

  • 摘要: 对地衣芽孢杆菌TJ-101在6.6L自控发酵罐中发酵制备β-甘露聚糖酶的全过程进行了时程分析。通过解析发酵过程中操作参数曲线与在线检测曲线之间的内在关联性,得出:搅拌速率、通气量和发酵时间三个关键因素对产酶具有重要影响。进一步通过中心复合设计(CCD)和响应面分析(RSM),优化确定了最优核心工艺参数:搅拌速率646.5r/min,通气量5.0L/min,发酵时间45.28h。在此条件下,β-甘露聚糖酶最高酶活达到440.52U/m L,比优化前提高44.5%。 
    Abstract: The fermentation process of β-mannanase produced by Bacillus licheniformis TJ-101 was analyzed in a 6.6-L fermenter. The internal relationship between the operation parameters and the online testing parameters was also elucidated during the fermentation process. The results showed that the key factors, including rotate speed, aeration rate and fermentation time, had an important effect on the β-mannanase production. Furthermore, the above three fermentation parameters for producing β-mannanase by Bacillus licheniformis TJ-101 were optimized via response surface methodology (RSM) . The optimum conditions were rotate speed of 646.5r/min, aeration rate of 5.0L/min and fermentation time of 45.28 h, respectively. Under these conditions, the maximum activity of β-mannanase was 440.52U/m L. Compared with the value before optimization, the activity was increased by 44.5%.
  • [1]

    Zheng J, Zhao W, Guo N, et al.Development of an industrial medium and a novel fed-batch strategy for high-level expression of recombinantβ-mananase by Pichia pastoris[J].Bioresource Technology, 2012, 118:257-264.

    [2] 崔福绵, 石家骥, 鲁茁壮.枯草芽孢杆菌中性β-甘露聚糖酶的产生及性质[J].微生物学报, 1999, 39 (1) :60-63.
    [3]

    Wang, M, You S, Zhang S, et al.Purification, characterization, and production ofβ-mannanase from Bacillus subtilis TJ-102and its application in gluco-mannooligosaccharides preparation[J].European Food Research and Technology, 2013, 237 (3) :399-408.

    [4]

    Wang J, Wan W.Experimental design methods for fermentative hydrogen production:a review[J].International Journal of Hydrogen Energy, 2009, 34 (1) :235-244.

    [5]

    Qiao, J, Rao Z, Dong B, et al.Expression of Bacillus subtilis MA139β-mannanase in Pichia pastoris and the enzyme characterization[J].Applied biochemistry and biotechnology, 2010, 160 (5) :1362-1370.

    [6]

    Liu, Z-H, Qi W, He Z-M.Optimization ofβ-mannanase production from Bacillus licheniformis TJ-101 using response surface methodology[J].Chemical and Biochemical Engineering Quarterly, 2008, 22 (3) :355-362.

    [7] 刘朝辉, 齐崴, 何志敏.地衣芽孢杆菌发酵生产β-甘露聚糖酶的代谢通量分析[J].过程工程学报, 2007 (6) :1163-1168.
    [8]

    Feng, Y, He Z, Ong S L, et al.Optimization of agitation, aeration, and temperature conditions for maximumβ-mannanase production[J].Enzyme and Microbial Technology, 2003, 32 (2) :282-289.

    [9]

    Zhao, W, Zheng J, Zhou H-b.A thermotolerant and coldactive mannan endo-1, 4-β-mannosidase from Aspergillus niger CBS 513.88:Constitutive overexpression and high-density fermentation in Pichia pastoris[J].Bioresource Technology, 2011, 102 (16) :7538-7547.

    [10]

    Schumpe, A, Adler I, Deckwer W D.Solubility of oxygen in electrolyte solutions[J].Biotechnology and Bioengineering, 1978, 20 (1) :145-150.

  • 期刊类型引用(13)

    1. 孙泽荟,李杰,钮小童,马晓,于晶阳,刘宇杰. 模糊数学耦合响应面法优化椰浆发酵乳的品质. 食品工业. 2023(04): 30-35 . 百度学术
    2. 李璐,邢晓旭,朱庆贺,王俊,李梓健,赵飞宇,赵鹏宇,孙东波. 车前草总黄酮提取工艺优化及其抗腹泻活性的研究. 黑龙江八一农垦大学学报. 2023(02): 53-59 . 百度学术
    3. 贾娟,翟雪静,乔薪蓓,王婷婷,杨雯雯. 基于模糊数学法综合评价金花葵袋泡茶制备工艺. 中国食品添加剂. 2023(08): 179-190 . 百度学术
    4. 徐志杰,黄子洳,马方芳,张善华,程汝滨,黄真,钟晓明. 响应面法优化三叶青总黄酮提取工艺及不同产地三叶青的质量评价. 食品工业科技. 2022(06): 158-167 . 本站查看
    5. 陈云坤,胡春艳,张知宇,赵艳芳,曹挥. 5种瑞香科植提取物对7种植物病原真菌的抑菌活性测定. 中国农学通报. 2022(13): 148-156 . 百度学术
    6. 周永萍,郑芝琳,朱月滢,王亚玲,郭晓农. 响应面法和正交法优化罗布麻黄酮提取工艺. 轻工科技. 2022(03): 1-3+11 . 百度学术
    7. 吕亭亭,杨志华,陶娟,韩永红,蔡亮亮,叶翩翩,刘旭. 泡桐花总黄酮的提取工艺优化及抗氧化活性. 中国酿造. 2021(01): 197-202 . 百度学术
    8. 张晓利,赵瑞香,姜建福,刘崇怀,牛生洋. 葡萄皮渣中花旗松素提取工艺优化及其抗氧化能力测定. 食品工业科技. 2021(05): 200-205+220 . 本站查看
    9. 李英迪,曹艳,夏其乐,杨开,毛荣良. 猴头菇三萜提取工艺优化及其抗氧化活性分析. 食品工业科技. 2021(22): 153-159 . 本站查看
    10. 秦惠珍,曹其义,宁莞权,唐健民,邹蓉,朱成豪,韦霄,熊忠臣. 响应面优化华腺萼木总黄酮和总多糖的超声波辅助提取工艺. 广西科学. 2020(04): 368-379 . 百度学术
    11. 邱曼榆,丘振文,谭汉添. 响应面法优化车前草多糖超声工艺及抗氧化研究. 安徽农业科学. 2020(23): 214-217 . 百度学术
    12. 谢进,戴艳娇,周佳民,黄艳宁,宋荣,彭斯文,朱校奇. 6种药用植物黄酮类物质含量测定. 湖南农业科学. 2020(12): 57-59 . 百度学术
    13. 李婧,刘玉翠,闫莉,颜海洋,孙超然,肖井雷. 基于响应面法与色度学的炒莲子工艺与质量标准研究. 时珍国医国药. 2020(11): 2641-2645 . 百度学术

    其他类型引用(4)

计量
  • 文章访问数:  162
  • HTML全文浏览量:  19
  • PDF下载量:  167
  • 被引次数: 17
出版历程
  • 收稿日期:  2014-04-23

目录

    /

    返回文章
    返回
    x 关闭 永久关闭