Optimization of mango juice enzymolysis process by neural network
-
摘要: 为研究酶解条件对芒果果汁得率的影响,在单因素的基础上建立了芒果果汁酶解工艺的神经网络模型,并对其工艺参数进行了优化。研究结果表明:果胶酶用量0.007%、纤维素酶用量0.001%、酶解温度40.6℃、酶解时间60min为最佳酶解工艺参数。此时芒果带皮果汁得率为80.48%,去皮果汁得率为66.47%,提高14.01%,且带皮果汁品质变化较小,可以接受。本研究为芒果果汁生产工艺改进提供参考。Abstract: In order to study the influence of enzymatic hydrolysis conditions on mango juice yield, the neural network model of mango juice enzymolysis process was established on the basis of single factors, and the process parameters were optimized.The results showed that the optimal enzymolysis process parameters were as follows, pectinase dosage 0.007%, cellulase dosage 0.001%, reaction temperature 40.6℃ and time 60 min. Under these conditions, the yield of mango pulp with peel was 80.48%, the yield of mango pulp without peel was 66.47%, increased by 14.01%, and the quality of juice can be accepted with small changes.This study provides a reference for mango juice production process improvement.
-
Keywords:
- neural network /
- enzymolysis /
- yield /
- juice
-
[1] 黄发新.九制芒果皮的研制[J].食品科学, 1999, 20 (1) :65-66. [2] 覃丽俭, 王强, 吴莉宇.芒果皮萃取物抑菌成分稳定性探讨[J].广西农业科学, 2007, 38 (4) :423-426. [3] Kim H, Moon J Y, Kim H, et al.Antioxidant and antiproliferative activities of mango (Mangifera indica L.) flesh and peel[J].Food Chemistry, 2010, 121 (2) :429-436.
[4] Kim H, Kim H, Mosaddik A, et al.Induction of apoptosis by ethanolic extract of mango peel and comparative analysis of the chemical constitutes of mango peel and flesh[J].Food Chemistry, 2012, 133 (2) :416-422.
[5] 汪敏, 王维民, 谌素华.芒果皮黄酮的免疫调节作用[J].食品研究与开发, 2010, 31 (8) :23-25. [6] Liang Ren Jie.Orthogonal test design for optimization of the extraction of polysaccharides from Phascolosoma esulenta and evaluation of its immunity activity[J].Carbohydrate Polymers, 2008, 73 (4) :558-563.
[7] Desai K M, Survase S A, Saudagar P S, et al.Comparison of artificial neural network (ANN) and response surface methodology (RSM) in fermentation media optimization:Case study of fermentative production of scleroglucan[J].Biochemical Engineering Journal, 2008, 41 (3) :266-273.
[8] 史德芳, 高虹, 程薇, 等.人工神经网络在食品加工过程模拟控制中的应用[J].食品研究与开发, 2009, 30 (1) :176-179. [9] Marchitan N, Cojocaru C, Mereuta A, et al.Modeling and optimization of tartaric acid reactive extraction from aqueous solutions:A comparison between response surface methodology and artificial neural network[J].Separation and Purification Technology, 2010, 75 (3) :273-285.
[10] 朱巧力, 许学勤.浓缩芒果浑汁制备中的酶解工艺研究[J].食品与发酵工业, 2009 (9) :179-183. [11] 杨辉, 陈永康, 张智锋, 等.果胶酶提高苹果出汁率工艺条件的优化[J].食品科技, 2006, 31 (5) :76-78. [12] 文赤夫, 董爱文, 李国章, 等.蒽酮比色法测定紫花地丁中总糖及还原糖含量[J].现代食品科技, 2005, 21 (3) :122-123. [13] 王启军.食品分析实验[M].第二版, 北京:化学工业出版社, 2012. [14] 李巨秀, 王柏玉.福林—酚比色法测定桑椹中总多酚[J].食品科学, 2009 (18) :292-295. [15] 王琳.食品分析[M].北京:中国轻工业出版社, 1994. [16] Marcel Proust.JMP统计和图形指南[M].第6版, SAS Institute Inc., Cary, NC, US.2006. [17] 刘莹, 王璋, 许时婴.酶法制取芒果混汁的工艺[J].食品工业科技, 2007, 28 (10) :167-170. [18] 曾青兰.纤维素酶及其应用[J].河北农业科学, 2008, 12 (8) :171-172.
计量
- 文章访问数: 172
- HTML全文浏览量: 24
- PDF下载量: 152