Research of frog antioxidant peptide and the activity of gastrointestinal digestion
-
摘要: 采用碱性蛋白酶、木瓜蛋白酶、胰酶、风味酶四种酶水解青养蛋白,探讨了各种酶对青养蛋白的酶解特性、清除DPPH·能力和ORAC值的差异。结果表明,木瓜蛋白酶和风味酶复配酶解青养蛋白可以得到较好的抗氧化活性肽,且水解度、蛋白回收率均较好;酶解产物的氨基酸组成中EAA/TAA为45.06%,EAA/NEAA为82.01%均高于FAO/WHO的推荐值,表明青养蛋白酶解物是较优的营养补充剂,且富含抗氧化性氨基酸;分子量分布表明,大于10ku的组分含量为3%,5~10ku肽段的含量为9%,低于3ku的组分含量达到73%。构建模拟了胃肠道消化,青养多肽的抗氧化活性在0~0.5h之间都有一个显著增加的过程(p<0.05),在2.5~4.0h消化的过程中得到的肽的抗氧化活性均较低,且不同时间段之间的活性差异不显著。Abstract: The frog protein hydrolysates were prepared by alcalase, papain, pancreatin and Flavourzyme, and the properties of hydrolysates and their antioxidant activities were studied.Results showed that the use of papain and flavourzyme together could get better antioxidant capacity, better hydrolysate degree, and protein recovery;and the amid acid composition of the hydrolysate also was outstanding, the values of EAA /TAA (45.06%) and EAA / NEAA (82.01%) were both higher than the FAO /WHO recommendation.The profile of molecular weight distribution revealed that the molecular weight less than 3000u reached 73%, while only 3% was observed for molecular weight more than 10000u.The antioxidant activities of frog peptide were all changed during the gastrointestinal digestion, a significant increase was saw during 0 ~ 0.5h (p < 0.05) , while during 2.5 ~ 4.0h, no significant changes were inspected.
-
[1] 李妍妍, 郑卫星, 王日昕.林蛙营养成分的多元分析[J].食品科学, 2007, 28 (12) :472-475. [2] 费梁, 胡淑慧, 叶昌媛, 等.中国动物志两栖纲[M].北京:科学出版社发行部, 2009. [3] Conlon J M, Kolodziejek J, Nowotny N.Antimicrobial peptides from the skins of North American frogs[J].Biochimicaet Biophysica Acta, 2009, 1788:1556-1563.
[4] Chen Wenlin, Yang Xuening, Chen Lingling, et al.Gene cloning and characterization of novel antinociceptive peptide from the brain of the frog, Odorrana grahami[J].Biochimie, 2011, 93:1110-1114.
[5] 赵桂华, 梁悦, 王宇.中国林蛙肉的营养成分分析与评价[J].营养学报, 2007, 29 (6) :623-624. [6] 孔繁东, 杜娟, 祖国仁.微生物酶水解林蛙肉蛋白质及产物抗氧化活性初探[J].中国酿造, 2009, 1:76-79. [7] 赵桂华.中国林蛙肉的生物酶解、营养分析及功能评级的分析[D].大连:辽宁师范大学2008. [8] 任娇艳, 赵谋明, 崔春.基于响应面分析法的草鱼蛋白酶解工艺[J].华南理工大学学报:自然科学版, 2006, 34 (3) , 95-100. [9] Cinq-Mars CD, Hu C, Kitts DD, et al.Investigations into Inhibitor type and mode, simulated gastrointestinal digestion, and cell transport of the angiotensin I-converting enzyme-inhibitory peptides in pacific hake (Merluccius productus) fillet hydrolysate[J].Journal of Agriculture and Food Chemistry, 2008, 56, 410-419.
[10] 大连轻工业学院, 华南理工大学.食品分析[M].北京:轻工业出版社, 1994:223. [11] Mahmoud M L, Malone W I, Cordle C T.Enzymatic hydrolysis o f casein.Effect of degree of hydrolysis on antigenicity and physical properties[J].Journal of Food Science, 1992, 57 (5) :1223-1229.
[12] 李琳, 赵谋明, 张黎.利用人工神经网络优化制备鳙鱼抗氧化肽[J].四川大学学报:工程科学版, 2006, 38 (1) :80-85. [13] Hernndez-Ledesma B, Amigo L, Recio I, et al.ACE-Inhibitory and Radical-Scavening Activity of Peptides Derived fromβ-Lactoglobulin.Internations with Ascorbic Acid[J].Journal of Agriculture and Food Chemistry, 2007, 55:3392-3397.
[14] Prippa A H, Isakssonb T, Stepaniak L, et al.Quantitative structure activity relationship modelling of peptides and proteins as a tool in food science[J].Trends in Food Science and Technology, 2005, 16:484-494.
[15] Alemán A, Giménez B, Pérez-Santín E, et al.Contribution of Leu and Hyp residues to antioxidant and ACE-inhibitory activities of peptide sequences isolated from squid gelatin hydrolysate[J].Food Chemistry, 2011, 125:334-341.
[16] Nalinanon S, Benjakul S, Kishimura H, et al.Functionalities and antioxidant properties of protein hydrolysates from the muscle of ornate threadfin bream treated with pepsin from skipjack tuna[J].Food Chemistry, 2011, 124:1354-1362.
[17] Zhu LJ, Chen J, Tang XY, et al.Reducing, radical scavenging, and chelation properties of in vitro digests of Alcalase-treated zein hydrolysate[J].Journal of Agriculture and Food Chemistry, 2008, 56:2714-2721.
计量
- 文章访问数: 123
- HTML全文浏览量: 12
- PDF下载量: 253