• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

响应面法优化热水浸提灰树花多糖的工艺研究

顾华杰, 孙燕, 李良智, 王桃云, 胡翠英, 袁红霞

顾华杰, 孙燕, 李良智, 王桃云, 胡翠英, 袁红霞. 响应面法优化热水浸提灰树花多糖的工艺研究[J]. 食品工业科技, 2013, (19): 234-238. DOI: 10.13386/j.issn1002-0306.2013.19.048
引用本文: 顾华杰, 孙燕, 李良智, 王桃云, 胡翠英, 袁红霞. 响应面法优化热水浸提灰树花多糖的工艺研究[J]. 食品工业科技, 2013, (19): 234-238. DOI: 10.13386/j.issn1002-0306.2013.19.048
GU Hua-jie, SUN Yan, LI Liang-zhi, WANG Tao-yun, HU Cui-ying, YUAN Hong-xia. Optimization of hot water extraction of polysaccharides from Grifola frondosa by response surface methodology[J]. Science and Technology of Food Industry, 2013, (19): 234-238. DOI: 10.13386/j.issn1002-0306.2013.19.048
Citation: GU Hua-jie, SUN Yan, LI Liang-zhi, WANG Tao-yun, HU Cui-ying, YUAN Hong-xia. Optimization of hot water extraction of polysaccharides from Grifola frondosa by response surface methodology[J]. Science and Technology of Food Industry, 2013, (19): 234-238. DOI: 10.13386/j.issn1002-0306.2013.19.048

响应面法优化热水浸提灰树花多糖的工艺研究

基金项目: 

苏州科技学院基金资助项目(XKY201126); 苏州市科技支撑计划(SN201131); 苏州应用基础研究计划(SN201206);

详细信息
    作者简介:

    顾华杰 (1981-) , 男, 硕士, 实验师, 研究方向:食用菌生理生化和天然产物提取。;

  • 中图分类号: TQ914

Optimization of hot water extraction of polysaccharides from Grifola frondosa by response surface methodology

  • 摘要: 以灰树花子实体为原料,采用响应面法对热水浸提灰树花多糖的工艺进行了优化。通过单因素实验确定了最佳提取次数为2次。利用Plackett-Burman设计确定了影响多糖得率的主要因素为浸提温度、料液比、浸提时间。再用最陡爬坡实验逼近最优响应区域。最后通过Box-Behnken设计建立了多糖得率的二次多项式模型,并获得了最优提取条件为:浸提温度85℃、浸提时间2.51h、料液比1∶25,经验证实验得到多糖得率为24.423%。 
    Abstract: In this experiment, the hot water extraction of polysaccharides from fruiting body of Grifola frondosa was optimized by response surface methodology.The appropriate times of extraction was determined to be twice by single-factor tests.It was found from the Plackett-Burman design that extraction temperature, ratio of material to liquid and extraction time were three major factors influencing the yield of GFP, and then the optimal response range was approached by the steepest ascent experiment.Lastly, a quadratic polynomial model relating the influencing factors and the yield was established through the Box-Behnken design, and the optimal conditions were: 85℃ of extraction temperature, 2.51h of extraction time, and 1 ∶ 25 of ratio of material to liquid.The yield of 24.423% was obtained by the verification experiment.
  • [1]

    Ohno N, Adachi Y, Suzuki I, et al.Characterization of the antitumor glucan obtained from liquid-cultured Grifola frondosa[J].Chem Pharm Bull (Tokyo) , 1986, 34 (4) :1709-1715.

    [2] 李磊, 王卫国, 郭彦亮, 等.灰树花多糖的制备及其生物活性研究进展[J].食品工业科技, 2009, 30 (11) :327-331.
    [3]

    Wu MJ, Cheng TL, Cheng SY, et al.Immunomodulatory properties of Grifola frondosa in submerged culture[J].J Agr Food Chem, 2006, 54 (8) :2906-2914.

    [4]

    Mayell M.Maitake extracts and their therapeutic potential--a review[J].Altern Med Rev, 2001, 6 (1) :48-60.

    [5]

    Yuki M, Akihisa M, Toshihiko T, et al.Characterization and antitumor effect of a novel polysaccharide from Grifola frondosa[J].J Agr Food Chem, 2009, 57 (21) :10143-10149.

    [6]

    Fang JP, Wang Y, Lv XF, et al.Structure of a β-glucan from Grifola frondosa and its antitumor effect by activating Dectin-1/Syk/NF-κB signaling[J].Glycoconjugate J, 2012, 29:365-377.

    [7] 项哨, 朱圣禾, 朱永平, 等.灰树花多糖在小鼠体内抗病毒作用的研究[J].浙江医科大学学报, 1995, 24 (6) :203-206.
    [8]

    Gu CQ, Li JW, Chao FH.Inhibition of hepatitis B virus by D-fraction from Grifola frondosa:Synergistic effect of combination with interferon-in HepG2 2.2.15[J].Antivir Res, 2006, 72 (2) :162-165.

    [9]

    Kubo K, Aoki H, Nanba H.Anti-diabetic activity present in the fruit body of Grifola frondosa (Maitake) .I.[J].Biol Pharm Bull, 1994, 17 (8) :1106-1110.

    [10]

    Lei H, Ma X, Wu WT.Anti-diabetic effect of anα-glucan from fruit body of maitake (Grifola frondosa) on KK-Ay mice[J].J Pharm Pharmacol, 2007, 59 (4) :575-582.

    [11] 王宝琴, 徐泽平, 杨传伦.灰树花菌丝体β-葡聚糖的毒理学实验[J].食品科学, 2010, 31 (17) :368-372.
    [12] 尹艳, 高文宏, 于淑娟.多糖提取技术的研究进展[J].食品工业科技, 2007, 28 (2) :248-250.
    [13] 徐翠莲, 杜林洳, 樊素芳, 等.多糖的提取、分离纯化及分析鉴定方法研究[J].河南科学, 2009, 27 (12) :1524-1529.
    [14] 王雪冰, 赵天瑞, 樊建.食用菌多糖提取技术研究概况[J].中国食用菌, 2010, 29 (2) :3-6.
    [15] 顾华杰, 沈晨斌, 严志舟, 等.灰树花多糖的提取及抗氧化性[J].生物加工过程, 2012, 10 (1) :19-24.
    [16]

    Job J, Sukumaran RK, Jayachandran K.Production of a highly glucose tolerantβ-glucosidase by Paecilomyces variotii MG3:optimization of fermentation conditions using Plackett-Burman and Box-Behnken experimental designs[J].World J Microb Biot, 2010, 26:1385-1391.

    [17]

    Zhu CP, Liu XL.Optimization of extraction process of crude polysaccharides from Pomegranate peel by response surface methodology[J].Carbohyd Polym, 2012, 92:1197-1202.

    [18] Douglas C.Montgomery.实验设计与分析[M].傅珏生, 张健, 王振羽, 等译.第六版.北京:人民邮电出版社, 2009:269-272, 349-354.
    [19] JeffWu CF, Hamada M.实验设计与分析及参数优化[M].张润楚, 郑海涛, 兰燕, 等译.北京:中国统计出版社, 2003:366-368.
    [20] 田泱源, 李瑞芳.响应面法在生物过程优化中的应用[J].食品工程, 2010 (2) :8-11, 53.
    [21] 柯志, 王红, 蔡友华, 等.响应面法优化嗜热厌氧代谢工程菌发酵产乙醇的培养基[J].中国酿造, 2011 (5) :59-62.
    [22] 张花利, 冯进, 董晓娜, 等.黑豆皮中黄酮提取及粗提物抑菌效果研究[J].大豆科学, 2011, 30 (3) :497-501.
    [23] 陈钧辉, 李俊, 张太平, 等.生物化学实验[M].第四版.北京:科学出版社, 2008:32-35.
    [24] 宿玮, 王彦超, 张翠玉, 等.海地瓜多糖脱色工艺研究[J].离子交换与吸附, 2011, 27 (6) :521-529.
    [25] 顾华杰, 黄金汇, 金琎, 等.4种灰树花多糖测定方法的比较[J].江苏农业科学, 2011, 39 (4) :400-402.
    [26] 徐向宏, 何明珠.实验设计与Design-Expert、SPSS应用[M].北京:科学出版社, 2010:146-160, 194-203.
    [27] 高娃, 于德水, 刘佳宁, 等.桦褐孔菌子实体多糖提取研究[J].生物技术, 2012, 22 (2) :70-73.
    [28] 岳金玫, 蒲彪, 陈安均, 等.响应面法优化块菌多糖的提取工艺[J].食品工业科技, 2012, 33 (19) :271-274.
    [29] 冮洁, 刘冰.采用响应面法优化杏鲍菇菌丝体多糖提取工艺[J].食品工业科技, 2012, 33 (9) :256-259.
    [30] 贾媛颖, 李永裕, 陈建烟, 等.橄榄多糖提取工艺研究[J].中国农学通报, 2012, 28 (9) :276-280.
    [31] 王晨瑜, 张雪松, 王站勇, 等.血红铆钉菇多糖的优化提取研究[J].北方园艺, 2013 (3) :155-157.
    [32] 高晶晶, 李稳宏, 李婉婷, 等.款冬花多糖几种脱色工艺的研究与对比[J].中成药, 2011, 33 (6) :1073-1075.
计量
  • 文章访问数:  151
  • HTML全文浏览量:  18
  • PDF下载量:  314
  • 被引次数: 0
出版历程
  • 收稿日期:  2013-03-06

目录

    /

    返回文章
    返回
    x 关闭 永久关闭