基于近红外光谱和共轭梯度神经网络的板栗褐变检测
详细信息Chinese chestnut browning detection by near infrared spectroscopy and scaled conjugate gradient back propagation neural network
-
摘要: 为了实现板栗褐变的无损检测,本实验以"毛板红"板栗为样品,在12000~4000cm-1范围内采集带壳和去壳板栗4个褐变等级的近红外光谱,用Savitzky-Golay平滑和标准正态变量变换(SNV)方法对光谱原始数据进行预处理,采用主成分分析法提取光谱的特征信息,建立基于共轭梯度调整算法的BP神经网络(SBP)识别板栗褐变模型。结果表明,对去壳板栗,最佳主成分因子数为8时,网络训练集和测试集对板栗褐变识别准确率最好,分别为100%和98.7%;对带壳板栗,最佳主成分因子数为10,网络训练集和测试集对板栗褐变识别准确率最好,分别为65.3%和64.4%。最后比较了所建网络与传统的基于梯度下降算法的BP神经网络(GBP)与径向基函数(RBF)网络的性能,验证集结果表明,构建的基于共轭梯度调整算法神经网络模型(SBP)效果好于GBP和RBF,对去壳板栗和带壳板栗褐变识别准确率分别为100%和66.7%。Abstract: In order to realize the non - destructive detection of Chinese chestnut browning, near infrared spectroscopy ( NIR) with the brand of 12000~4000cm-1 was used to acquire the spectra of shelled and unshelled chestnuts of“Mao Ban Hong ”with the different browning grade. The original near infrared spectra data were processed by Savitzky - Golay smoothing and standard normal variate ( SNV ) transforming. Then, principal component analysis ( PCA) was applied to extract the characteristic information of the spectrum, and the back propagation neural network based on the scaled conjugate gradient algorithm ( SBP) was set up by the principal components as the input.The results showed that the recognition of browning level for unshelled chestnuts was the best when the principal component's number was 8 for SBP, and the accuracy for the training and testing samples were 100% and 98.7% , respectively.For the shelled chestnuts, 10 was the best number of principal components for SBP neural network, and the recognition for the training and testing samples were 65.3% and 64.4% respectively. Finally, the comparison between the traditional back propagation neural network based on gradient descent algorithm ( GBP) and Radial basis function neural network ( RBF) was proceeded. The results from the validation samples showed that the recognition of SBP for discriminating unshelled and shelled chestnuts was 100% and 66.7% , respectively.SBP was better than GBP and RBF for the discrimination of browning for Chinese chestnut.
-
[1] 徐同成, 王文亮, 刘洁, 等.板栗制品开发现状及发展趋势[J].中国食物与营养, 2011, 17 (8) :17-19. [2] 生吉萍, 何树林, 胡小松, 等.板栗栗仁褐变及其控制方法研究[J].食品与机械, 2000, 75 (1) :18-19. [3] Jha S N, Jaiswal P, Narsaiah K, et al.Non-destructive prediction of sweetness of intact mango using near infrared spectroscopy[J].Scientia Horticulturae, 2012, 138:171-175.
[4] Esteve Agelet L, Ellis D D, Duvick S, et al.Feasibility of near infrared spectroscopy for analyzing corn kernel damage and viability of soybean and corn kernels[J].Journal of Cereal Science, 2012, 55 (2) :160-165.
[5] 刘燕德, 万常斓.芝麻油掺伪的近红外透射光谱检测技术[J].农业机械学报, 2012, 43 (7) :136-140. [6] 周竹, 刘洁, 李小昱, 等.霉变板栗的近红外光谱和神经网络方法判别[J].农业机械学报, 2009, 40 (21) :109-112. [7] 刘洁, 李小昱, 李培武, 等.基于近红外光谱的板栗水分检测方法[J].农业工程学报, 2010, 26 (2) :338-341. [8] 展慧, 李小昱, 周竹, 等.基于近红外光谱和机器视觉融合技术的板栗缺陷检测[J].农业工程学报, 2011, 27 (2) :345-349. [9] 何勇, 李晓丽, 邵永妮.基于主成分分析和神经网络的近红外光谱苹果种鉴别方法研究[J].光谱学与光谱分析, 2006, 26 (5) :850-853. [10] 祝诗平.基于PCA与GA的近红外光谱建模样品选择方法[J].农业工程学报, 2008, 24 (9) :126-130. [11] 张益波, 何欢, 孟庆繁, 等.近红外光谱结合径向基神经网络在云芝菌丝体无损分析中的应用[J].光学学报, 2010, 30 (12) :3552-3557. [12] 徐丽娜.神经网络控制[M].北京:电子工业出版社, 2003 [13] 潘磊庆, 屠康, 苏子鹏, 等.基于计算机视觉和神经网络检测鸡蛋裂纹的研究[J].农业工程学报, 2007, 23 (5) :154-158. [14] Pan Leiqing, Zhan Ge, Tu Kang, et al.Eggshell crack detection based on computer vision and acoustic response by means of back propagation artificial neural network[J].European Food Research and Technology, 2011, 233 (3) :457-463.
[15] Liu Fei, He Yong.Classification of brands of instant noodles using Vis/NIR spectroscopy and chemometrics[J].Food Research International, 2008, 41 (5) :562-567.
[16] 胡方明, 简琴, 张秀君.基于BP神经网络的车型分类器[J].西安电子科技大学学报:自然科学版, 2005, 32 (3) :439-442. [17] Martin Fodslette Moller.A scaled conjugate gradient algorithm for fast supervised learning[J].Neural networks, 1993, 6:525-533.
[18] M T Hagan, H B Demuth, M H Beale.Neural Network Design[M].Boston, USA:PWS Publishing, 1996.
[19] 陈昌华, 谭俊, 尹健康, 等.基于PCA-RBF神经网络的烟田土壤水分预测[J].农业工程学报, 2010, 26 (8) :85-90. [20] 陆婉珍, 袁洪福, 徐广通, 等.现代近红外光谱分析技术 (第二版) [M].北京:中国石化出版社, 2007. -
期刊类型引用(2)
1. 孟锋,索铃兰,李程,叶诗怡,张碧莹,陈萍. 果蔬制品非酶褐变机理及控制技术研究进展. 食品研究与开发. 2024(17): 219-224 . 百度学术
2. 夏娜,周茜,魏健,王玉州. 不同储藏温度对NFC西梅汁品质变化的影响. 保鲜与加工. 2021(08): 7-14 . 百度学术
其他类型引用(3)
计量
- 文章访问数: 117
- HTML全文浏览量: 15
- PDF下载量: 199
- 被引次数: 5