• 中国科技期刊卓越行动计划项目资助期刊
  • 中国精品科技期刊
  • EI
  • Scopus
  • CAB Abstracts
  • Global Health
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国科技核心期刊CSTPCD
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国开放获取期刊数据库COAJ
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

基于近红外光谱和共轭梯度神经网络的板栗褐变检测

基于近红外光谱和共轭梯度神经网络的板栗褐变检测[J]. 食品工业科技, 2013, (15): 284-288. DOI: 10.13386/j.issn1002-0306.2013.15.025
引用本文: 基于近红外光谱和共轭梯度神经网络的板栗褐变检测[J]. 食品工业科技, 2013, (15): 284-288. DOI: 10.13386/j.issn1002-0306.2013.15.025
Chinese chestnut browning detection by near infrared spectroscopy and scaled conjugate gradient back propagation neural network[J]. Science and Technology of Food Industry, 2013, (15): 284-288. DOI: 10.13386/j.issn1002-0306.2013.15.025
Citation: Chinese chestnut browning detection by near infrared spectroscopy and scaled conjugate gradient back propagation neural network[J]. Science and Technology of Food Industry, 2013, (15): 284-288. DOI: 10.13386/j.issn1002-0306.2013.15.025

基于近红外光谱和共轭梯度神经网络的板栗褐变检测

基金项目: 

浙江省自然科学基金(Y3110450); 国家自然科学基金(31101282); 浙江农林大学自然科学基金预研项目(2044010004); 中央高校基本科研业务费专项资金(KYZ201120); 江苏省高校优势学科建设工程;

详细信息
  • 中图分类号: S664.2

Chinese chestnut browning detection by near infrared spectroscopy and scaled conjugate gradient back propagation neural network

  • 摘要: 为了实现板栗褐变的无损检测,本实验以"毛板红"板栗为样品,在12000~4000cm-1范围内采集带壳和去壳板栗4个褐变等级的近红外光谱,用Savitzky-Golay平滑和标准正态变量变换(SNV)方法对光谱原始数据进行预处理,采用主成分分析法提取光谱的特征信息,建立基于共轭梯度调整算法的BP神经网络(SBP)识别板栗褐变模型。结果表明,对去壳板栗,最佳主成分因子数为8时,网络训练集和测试集对板栗褐变识别准确率最好,分别为100%和98.7%;对带壳板栗,最佳主成分因子数为10,网络训练集和测试集对板栗褐变识别准确率最好,分别为65.3%和64.4%。最后比较了所建网络与传统的基于梯度下降算法的BP神经网络(GBP)与径向基函数(RBF)网络的性能,验证集结果表明,构建的基于共轭梯度调整算法神经网络模型(SBP)效果好于GBP和RBF,对去壳板栗和带壳板栗褐变识别准确率分别为100%和66.7%。 
    Abstract: In order to realize the non - destructive detection of Chinese chestnut browning, near infrared spectroscopy ( NIR) with the brand of 12000~4000cm-1 was used to acquire the spectra of shelled and unshelled chestnuts of“Mao Ban Hong ”with the different browning grade. The original near infrared spectra data were processed by Savitzky - Golay smoothing and standard normal variate ( SNV ) transforming. Then, principal component analysis ( PCA) was applied to extract the characteristic information of the spectrum, and the back propagation neural network based on the scaled conjugate gradient algorithm ( SBP) was set up by the principal components as the input.The results showed that the recognition of browning level for unshelled chestnuts was the best when the principal component's number was 8 for SBP, and the accuracy for the training and testing samples were 100% and 98.7% , respectively.For the shelled chestnuts, 10 was the best number of principal components for SBP neural network, and the recognition for the training and testing samples were 65.3% and 64.4% respectively. Finally, the comparison between the traditional back propagation neural network based on gradient descent algorithm ( GBP) and Radial basis function neural network ( RBF) was proceeded. The results from the validation samples showed that the recognition of SBP for discriminating unshelled and shelled chestnuts was 100% and 66.7% , respectively.SBP was better than GBP and RBF for the discrimination of browning for Chinese chestnut.
  • [1] 徐同成, 王文亮, 刘洁, 等.板栗制品开发现状及发展趋势[J].中国食物与营养, 2011, 17 (8) :17-19.
    [2] 生吉萍, 何树林, 胡小松, 等.板栗栗仁褐变及其控制方法研究[J].食品与机械, 2000, 75 (1) :18-19.
    [3]

    Jha S N, Jaiswal P, Narsaiah K, et al.Non-destructive prediction of sweetness of intact mango using near infrared spectroscopy[J].Scientia Horticulturae, 2012, 138:171-175.

    [4]

    Esteve Agelet L, Ellis D D, Duvick S, et al.Feasibility of near infrared spectroscopy for analyzing corn kernel damage and viability of soybean and corn kernels[J].Journal of Cereal Science, 2012, 55 (2) :160-165.

    [5] 刘燕德, 万常斓.芝麻油掺伪的近红外透射光谱检测技术[J].农业机械学报, 2012, 43 (7) :136-140.
    [6] 周竹, 刘洁, 李小昱, 等.霉变板栗的近红外光谱和神经网络方法判别[J].农业机械学报, 2009, 40 (21) :109-112.
    [7] 刘洁, 李小昱, 李培武, 等.基于近红外光谱的板栗水分检测方法[J].农业工程学报, 2010, 26 (2) :338-341.
    [8] 展慧, 李小昱, 周竹, 等.基于近红外光谱和机器视觉融合技术的板栗缺陷检测[J].农业工程学报, 2011, 27 (2) :345-349.
    [9] 何勇, 李晓丽, 邵永妮.基于主成分分析和神经网络的近红外光谱苹果种鉴别方法研究[J].光谱学与光谱分析, 2006, 26 (5) :850-853.
    [10] 祝诗平.基于PCA与GA的近红外光谱建模样品选择方法[J].农业工程学报, 2008, 24 (9) :126-130.
    [11] 张益波, 何欢, 孟庆繁, 等.近红外光谱结合径向基神经网络在云芝菌丝体无损分析中的应用[J].光学学报, 2010, 30 (12) :3552-3557.
    [12] 徐丽娜.神经网络控制[M].北京:电子工业出版社, 2003
    [13] 潘磊庆, 屠康, 苏子鹏, 等.基于计算机视觉和神经网络检测鸡蛋裂纹的研究[J].农业工程学报, 2007, 23 (5) :154-158.
    [14]

    Pan Leiqing, Zhan Ge, Tu Kang, et al.Eggshell crack detection based on computer vision and acoustic response by means of back propagation artificial neural network[J].European Food Research and Technology, 2011, 233 (3) :457-463.

    [15]

    Liu Fei, He Yong.Classification of brands of instant noodles using Vis/NIR spectroscopy and chemometrics[J].Food Research International, 2008, 41 (5) :562-567.

    [16] 胡方明, 简琴, 张秀君.基于BP神经网络的车型分类器[J].西安电子科技大学学报:自然科学版, 2005, 32 (3) :439-442.
    [17]

    Martin Fodslette Moller.A scaled conjugate gradient algorithm for fast supervised learning[J].Neural networks, 1993, 6:525-533.

    [18]

    M T Hagan, H B Demuth, M H Beale.Neural Network Design[M].Boston, USA:PWS Publishing, 1996.

    [19] 陈昌华, 谭俊, 尹健康, 等.基于PCA-RBF神经网络的烟田土壤水分预测[J].农业工程学报, 2010, 26 (8) :85-90.
    [20] 陆婉珍, 袁洪福, 徐广通, 等.现代近红外光谱分析技术 (第二版) [M].北京:中国石化出版社, 2007.
  • 期刊类型引用(2)

    1. 孟锋,索铃兰,李程,叶诗怡,张碧莹,陈萍. 果蔬制品非酶褐变机理及控制技术研究进展. 食品研究与开发. 2024(17): 219-224 . 百度学术
    2. 夏娜,周茜,魏健,王玉州. 不同储藏温度对NFC西梅汁品质变化的影响. 保鲜与加工. 2021(08): 7-14 . 百度学术

    其他类型引用(3)

计量
  • 文章访问数:  117
  • HTML全文浏览量:  15
  • PDF下载量:  199
  • 被引次数: 5
出版历程
  • 收稿日期:  2013-01-09

目录

    /

    返回文章
    返回
    x 关闭 永久关闭