绿豆挤压力学特性的实验研究
详细信息Experimental research of extrusion mechanical properties of mung beans
-
摘要: 为降低绿豆种子在收获、贮藏、运输过程中所产生的机械损伤,掌握绿豆籽粒的挤压粉碎加工机理,通过选取含水率为9.3%~12.8%的绿豆籽粒,在不同加载速度下对不同放置方式的绿豆籽粒在材料力学实验机上进行静态挤压实验。实验结果表明,绿豆籽粒的弹性模量为153.4~247.7MPa,屈服强度为0.23~0.98MPa,破碎负载为42.62~81.72N,最大应变为0.25%~0.61%;绿豆籽粒随着含水率的增加,其弹性模量、屈服强度、破碎负载均有明显下降但最大挤压变形量却升高;在同一含水率下,立放与侧放挤压时绿豆的屈服强度、破碎负载较大,平放挤压时较小;对于弹性模量变化而言,立放与平放挤压时较大,侧放时较小;在实验参数选取范围内加载速率对绿豆籽粒抗挤压能力影响不显著,绿豆籽粒在3种不同放置方式下,受压面生成挤压裂纹的形状、部位及规律不同。Abstract: In order to master the comminution mechanism, so as to reduce the mechanical damage in the harvest, storage, and transportation, static extrusion tests of mung beans were conducted at different loading speed, loading methods and moisture contents ( from 9.3% to 12.8% ) by using material mechanics test machine. The experiment results showed that the elastic modulus of mung beans was 153.4 ~ 247.7MPa, the yield strength was 0.23~0.98MPa, the failure load was 42.62~81.72N, and the maximum strain was 0.25% ~0.61% .With the increase of moisture contents, the maximum strain of mung beans was increased, but the elastic modulus, failure load and yield strength were decreased obviously. At the same moisture contents, the failure load and yield strength were larger when the mung beans extruded in the position of standing or lying on its side and they were smaller when mung beans lying flat.Meanwhile, the elastic modulus was larger when mung beans standing or lying flat and it was smaller when lying on its side. In the test parameters selection scope, loading speed did not obviously effect on extrusion ability of mung beans.The shape, position and features of cracks in loading surface was various under 3 different loading methods.
-
[1] 王丽侠, 程须珍, 王素华.绿豆种质资源、育种及遗传研究进展[J].中国农业科学, 2009, 42 (5) :1519-1527. [2] 纪花, 陈娜屏, 卢大新.绿豆的营养价值及综合利用[J].现代生物医学进展, 2006, 6 (10) :143-144, 156. [3] 张克平, 黄建龙, 杨敏, 等.冬小麦籽粒受挤压特性的有限元分析及实验验证[J].农业工程学报, 2010, 26 (6) :352-356. [4] 陈燕, 蔡伟亮, 邹湘军, 等.荔枝鲜果挤压力学特性[J].农业工程学报, 2011, 27 (8) :360-364. [5] 李心平, 李玉柱, 马福丽, 等.玉米种子抗压特性及裂纹生成规律[J].农业机械学报, 2011, 42 (8) :94-98. [6] 王荣, 焦群英, 魏德强, 等.葡萄的力学特性及有限元模拟[J].农业工程学报, 2005, 21 (2) :7-10. [7] 陈燕, 蔡伟亮, 邹湘军, 等.荔枝的力学特性测试及其有限元分析[J].农业工程学报, 2011, 27 (12) :358-363. [8] 卿艳梅, 曹玉华, 李长友, 等.龙眼鲜果剥壳力学特性[J].农业工程学报, 2010, 26 (5) :122-126. [9] 张黎骅, 秦文, 马荣朝, 等.杏核压缩力学特性的研究[J].食品科学, 2010, 31 (17) :143-147. [10] 王新忠, 王敏.银杏种核力学特性实验[J].农业机械学报, 2008, 39 (8) :84-88. [11] 赵国磐, 佟屏亚.绿豆小豆栽培技术[M].北京:金盾出版社, 1993:4-5. [12] 张锋伟, 赵春花, 郭维俊, 等.基于压痕加载曲线的谷物籽粒硬度性能测定技术[J].农业机械学报, 2010, 41 (4) :128-133. [13] 赵春花, 张锋伟, 曹致中.豆禾牧草茎秆的力学特性实验[J].农业工程学报, 2009, 25 (9) :122-126. [14] 赵春花, 韩正晟, 师尚礼, 等.新育牧草茎秆收获期力学特性与显微结构[J].农业工程学报, 2011, 27 (7) :179-183. [15] 郭维俊, 王芬娥, 黄高宝, 等.小麦茎秆力学性能与化学组分实验[J].农业机械学报, 2009, 40 (2) :110-114. [16] 郭维俊, 黄高宝, 王芬娥, 等.小麦根系力学性能及微观结构研究[J].农业机械学报, 2010, 41 (1) :92-95.
计量
- 文章访问数:
- HTML全文浏览量:
- PDF下载量: