Effect of Salinity in fermentation medium on Chlorella vulgaris protein and lipid contents
-
摘要: 实验室条件下,考察了发酵过程中不同盐度对小球藻细胞生长、蛋白及油脂含量的影响,结果表明:培养时间为144h,小球藻在无NaCl培养基中生长最佳,其细胞干重、光合色素含量、比生长速率和最大生产强度分别为0.750g·L-1、39.50mg·g-1、0.225d-1和0.125g·L-1·d-1,且氮磷利用率高分别为96.4%及93.5%,其消耗效率分别为9.10、0.71mg·L-1·d-1,藻蛋白含量也最高为55.0%(W),其生产效率为68.40mg·L-1·d-1;而藻细胞培养在2.5%NaCl浓度下,在96h脯氨酸含量达最高为2.25%(W),最高与最低值之比超过20.0;小球藻培养在含2.5%NaCl培养基中,在144h油脂含量最高达15.5%(W),其生产效率为16.10mg·L-1·d-1。NaCl浓度不仅影响小球藻细胞对氮磷等营养的吸收,而且对生物量、蛋白质、脯氨酸及油脂等细胞组分的生物合成具有明显影响。藉此,提出了通过改变盐浓度,达到调控小球藻胞内生理代谢组分的可行性。Abstract: Salinity-inducing effect on growth, metabolism of protein and lipid of Chlorella vulgaris were studied. In laboratory conditions, culture time of 144h lasted, the algal growth was the best under 0.0% NaCl, in which its biomass , chlorophyll , specific growth rate and productivity were 0.750g·L-1 , 39.50mg·g-1 , 0.225d-1 and 0.125g·L-1 ·d-1 , respectively, decreased significantly in higher 3.5% NaCl salinity. Additionally, the consumptions of nitrogen (N) and phosphorus (P) were 96.4% and 93.5%, with productivities of 9.10 and 0.71mg·L-1 ·d-1 , respectively. The algal protein was significantly higher in non-salinity with a final content of around 55.0% (W) from the dry biomass and a productivity of 68.40mg·L-1 ·d-1 . At the 96h, proline were higher in mezzo-salinities (2.5%) with the final contents of around 2.25% (W) , and the ratios of the highest (2.5% salinity) to the lowest value (0.0% salinity) was around 20.0. Similarly, at the 144h, lipid was higher in mezzo-salinities (2.5%) with the final contents of around 15.5% (W) and a productivity of 16.10mg·L-1 ·d-1 , which the ratios of the highest (2.5% salinity) to the lowest value (0.0% salinity) was around 3.6. Under hypo-and hyper-salinity treatments, both proline and lipid were lower. These results collectively suggested that NaCl salinity couldn’t only affect some nutrient consumption of nitrogen and phosphorus significantly, but also the algal biomass and components of protein, amino acid and lipid. Therefore, salinity could be modified to regulate physiological compositions of the algal cell during the cultivation of Chlorella vulgaris.
-
[1] 陈颖, 李文彬, 孙勇如.小球藻生物技术研究应用现状及展望[J].中国生物工程杂志, 1998, 18 (6) :12-16. [2] Miao XL, Wu QY.Biodiesel production from heterotrophic microalgal oil[J].Bioresourc Technol, 2006, 97 (6) :841-846.
[3] Becker W.Handbook of microalgal culture:Microalgae in human and animal nitrition[M].In:Richmond, Blackwell Science, 2004:312-351.
[4] 孔维宝, 李龙囡, 张继, 等.小球藻的营养保健功能及其在食品工业中的应用[J].食品科学, 2010, 31 (9) :323-328. [5] Graham LE, Wilcox LW.Algae[M].New York:Benjamin-Cummings Publishing Company, 2000:640.
[6] Kumar M, Kumari P, Gupta V, et al.Biochemical responses of red alga Gracilaria corticata (Gracilariales, Rhodophyta) to salinity induced oxidative stress[J].J Exp Marine Bio Ecol, 2010, 391:27-34.
[7] Macler BA.Salinity effects on photosynthesis, carbon allocation and nitrogen assimilation in the red alga Gelidium coulteri[J].Plant Physiol, 1988, 88:690-694.
[8] Israel A, Martinez-Goss M, Friedlander M.Effect of salinity and pH on growth and agar yield of Gracilaria tenuistipitata var.liui in laboratory and outdoor cultivation[J].J Appl Phycol, 1999, 11:543-549.
[9] Choi HG, Kim YS, Kim JH, et al.Effects of temperature and salinity on the growth of Gracilaria verrucosa and G chorda with the potential for mariculture in Korea[J].J Appl Phycol, 2006, 18:269-277.
[10] Phooprong S, Ogawa H, Hayashizaki K.Photosynthetic and respiratory responses of Gracilaria salicornia (C.Agardh) Dawson (Gracilariales, Rhodophyta) from Thailand and Japan[J].J Appl Phycol, 2007, 19:795-801.
[11] Helmuth B, Kingsolver JG, Carrington E.Biophysics, physiological ecology and climate change:does mechanism matter?[J].Annu Rev Physiol, 2005, 67:177-201.
[12] Dring MJ.Stress resistance and disease in seaweed:the role of reactive oxygen metabolism[J].Adv Bot Res, 2006, 43:175-207.
[13] Collen J, Davidson I.Stress tolerance and reactive oxygen metabolism in the intertidal red seaweed Mastocarpus stellatus and Chondrus crispus[J].Plant Cell Environ, 1999, 22:1143-1151.
[14] Liu F, Phang SJ.Stress tolerance and antioxidant enzymatic activities in the metabolisms of the reactive oxygen species in two intertidal red algae Grateloupia turuturu and Palmaria palmate[J].J Exp Mar Biol Ecol, 2010, 382:82-87.
[15] Choo K, Snoeijs P, Pederson M.Oxidative stress tolerance in the filamentous green algae Cladophora glomerata and Enteromorpha ahlenriana[J].J Exp Mar Biol Ecol, 2004, 298:111-123.
[16] Wu TM, Lee TM.Regulation and gene expression of antioxidant enzymes in Ulva faciata delile (Ulvales, Chlorophyta) in response to excess copper[J].Phycologia, 2008, 47 (4) :346-360.
[17] Takagi M, Karseno, Yoshida T.Effect of salt concentration on intracellular accumulation of lipids and triacylglyceride in marine microalgae Dunaliella cells[J].J Biosci Engn, 2006, 101 (3) :223-226.
[18] Cohen Z, Vonshak A, Richmond A.Effect of environmental conditions on fatty acid composition of the red alga Porphyridium cruentum:correlation to growth rate[J].J Phycol, 1988, 24:328-332.
[19] http://web.biosci.utexas.edu/utex/mediaDetail.aspx?mediaID=26.
[20] Hartmut K, Lichtenthaler, Claus B.Chlorophylls and Carotenoids:Measurement and characterization by UV-VIS spectroscopy[M].Curr Protoc Food Analyt Chem, 2001:F4.3.1-4.3.8.
[21] Lynch JM, Barbano DM.Kjeldahl nitrogen analysis as a reference method for protein determination in dairy products[J].J AOAC Int, 1999, 82:1389-1398.
[22] 陈建勋, 王晓峰, 编.植物生理学实验指导[M].第二版.广州:华南理工大学出版社, 2006. [23] Priscu JC, Priscu LR, Palmisano AC, et al.Estimation of neutral lipid levels in Antarctic sea ice microalgae by nile redfluorescence[J].Antarctic Sci, 1990 (2) :149-155.
[24] Singh DP, Kshatriya K.NaCl-induced oxidative damage in the cyanobacterium Anabaena doliolum[J].Curr Microbiol, 2002, 44:411-417.
[25] Lu C, Vonshak A.Effect of salinity stress on photosystem II function in cyanobacterial Spirulina platensis cells[J].Physiol Plant, 2002, 114:405-413.
[26] Richmond A.Cell response to environmental factors[M].In:Richmond, A (.Ed.) , Handbook of Microalgal Mass Culture.CRC Press, Boca Raton, 1986:69-99.
[27] Araújo SDC, Garcia VMT.Growth and biochemical composition of the diatom Chaetoceros cf wighamii brightwell under different temperature, salinity and carbon dioxide levels.I.Protein, carbohydrates and lipids[J].Aquaculture, 2005, 246:405-412.
[28] Gzik A.Accumulation of proline and pattern ofα-amino acid in sugar beet plants in response to osmotic, water and salt stress[J].Environ Exp Botany, 1996, 36 (l) :29-38.
[29] 王丽媛, 丁国华, 黎莉.脯氨酸代谢的研究进展[J].哈尔滨师范大学自然科学学报, 2010, 26 (2) :84-89. [30] Kiyosue T, Yoshiba Y, Yamaguchi SK, et al.A nuclear gene encoding mitochondrial proline dehydrogenase, an enzyme involved in praline metabolism, is upregulated by proline but down regulated by dehydration in Arabidopsis thaliana[J].Plant
[31] 李敦海.刘永定.宋立荣.盐胁迫对葛仙米生理生化特性的影响[J].水生生物学报.1999, 23 (5) :414-419. [32] Kakinuma M, Coury DA, Kuno Y, et al.Physiological and biochemical responses to thermal and salinity stresses in a sterile mutant of Ulva pertusa (Ulvales, Chlorophyta) [J].Mar Biol, 2006, 149:97-106.
[33] Lee TM, Chang YC, Lin YH.Seasonal acclimation in Gracilaria tenuistipitata.Differences in physiological responses between winter and summer Gracilaria tenuistipitata (Gigartinales, Rhodophyta) [J].Bot Bull Acad Sin, 1999, 49:93-100.
[34] Ben-Amotz A, Tomabene TG, Thomas WH.Chemical profile of selected species of microalgae with emphasis on lipids[J].J Phycol, 1985, 21:72-81.
[35] Hu Q.Handbook of microalgal culture:Biotechnology and applied phycology[M].In:Richmond, Blackwell Science, 2004:83-93.
[36] Harwatia TU, Willkea T, Vorlop KD.Characterization of the lipid accumulation in a tropical freshwater microalgae Chlorococcum sp.[J].Bioresourc Technol, 2012, 121:54-60.
[37] Elkahouia S, Smaouib A, Zarroukb M, et al.Salt-induced lipid changes in Catharanthus roseus cultured cell suspensions[J].Phytochemistry, 2004, 65 (13) :1911-1917.
[38] Taran N, Okamenko A, Musienko N.Sulpholipid reflects plant resistance to stress-factor action[J].Biochem Society Transaction, 2000, 28:922-924.
计量
- 文章访问数: 113
- HTML全文浏览量: 7
- PDF下载量: 112