• 中国科技期刊卓越行动计划项目资助期刊
  • 中国精品科技期刊
  • EI
  • Scopus
  • CAB Abstracts
  • Global Health
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国科技核心期刊CSTPCD
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国开放获取期刊数据库COAJ
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

两种近红外光谱分辨率预测牛肉营养成分的比较研究

两种近红外光谱分辨率预测牛肉营养成分的比较研究[J]. 食品工业科技, 2013, (03): 302-305. DOI: 10.13386/j.issn1002-0306.2013.03.021
引用本文: 两种近红外光谱分辨率预测牛肉营养成分的比较研究[J]. 食品工业科技, 2013, (03): 302-305. DOI: 10.13386/j.issn1002-0306.2013.03.021
Comparative study on the prediction of beef nutrients by near infrared spectroscopy under two resolutions[J]. Science and Technology of Food Industry, 2013, (03): 302-305. DOI: 10.13386/j.issn1002-0306.2013.03.021
Citation: Comparative study on the prediction of beef nutrients by near infrared spectroscopy under two resolutions[J]. Science and Technology of Food Industry, 2013, (03): 302-305. DOI: 10.13386/j.issn1002-0306.2013.03.021

两种近红外光谱分辨率预测牛肉营养成分的比较研究

基金项目: 

国家公益性(农业)行业科技专项(201303083,200903012); 国际科技合作专项(2012DFA31140); 农业部“948”重点项目(2011-G5);

详细信息
  • 中图分类号: TS251.7;O657.33

Comparative study on the prediction of beef nutrients by near infrared spectroscopy under two resolutions

  • 摘要: 应用近红外光谱技术在不同光谱分辨率下分析了同一批牛肉样本的蛋白质、脂肪和水分含量。样品取自16头西门塔尔杂交牛的14个部位,宰后成熟48h,绞成肉糜状后分别于不同分辨率1.6和10.0nm条件下进行近红外光谱扫描和化学成分测定。应用The Unscrambler建模软件,采用偏最小二乘回归技术(PLSR),通过交互验证程序建立近红外数学模型,得到不同分辨率1.6和10.0nm条件下蛋白质的校正集相关系数R分别为0.94和0.93,交互验证标准差(RMSECV)分别为0.49和0.54;脂肪R分别为0.93和0.92,RMSECV分别为0.64和0.76;水分R分别为0.87和0.81,RMSECV分别为1.18和1.26。研究结果表明,高光谱分辨率下的蛋白质、脂肪和水分模型精度要略优于低光谱分辨率所建模型。 
    Abstract: The protein, fat and moisture of the beef samples under two resolutions were analyzed using near infrared spectroscopy.The samples were obtained from 14 parts of 16 Simmental crossbred cattle. After 48h postmortem aging, these samples would be homogenized and scanned.Immediately after scanning under 1.6 and 10.0nm by near infrared spectroscopy ( NIR) , the samples were analyzed for protein, fat and moisture.The models were set up by partial least squares regression ( PLSR) using the Unscrambler software.The results of nutrient contents tested by cross-validation under two resolutions of 1.6 and 10.0nm showed R of 0.94 and 0.93, RMSECV of 0.49 and 0.54 ( protein) ; R of 0.93 and 0.92, RMSECV of 0.64 and 0.76 ( fat) ; R of 0.87 and 0.81, RMSECV of 1.18 and 1.26 ( moisture) , respectively.The above research results demonstrated that for the models of protein, fat and moisture, the higher resolution provide slightly better results than the lower resolution.
  • [1] 严衍禄, 赵龙莲, 韩东海, 等.近红外光谱分析基础与应用[M].北京:中国轻工业出版社, 2005:130.
    [2]

    SATO H, SHIMOYAMA M, KAMIYA T, et al.Near infrared spectra of pellets and thin films of high-density, low-density and linear low-density polyethylenes and prediction of their physical properties by multivariate data analysis[J].Near Infrared Spectrosc, 2003, 11 (4) :309-321.

    [3] 王一兵, 王红宇, 翟宏菊, 等.近红外光谱分辨率对定量分析的影响[J].分析化学研究简报, 2006, 34 (5) :699-701.
    [4]

    KESTENS V, CHAROUD-GOT J, BAU A, et al.Online measurement of water content in candidate reference materials by acoustooptical tuneable filter near-infrared spectrometry (AOTF-NIR) using pork meat calibrants controlled[J].Food Chemistry, 2008, 106 (4) :1359-1365.

    [5]

    LIAO Y T, FAN Y X, CHENG F.On-line prediction of fresh pork quality using visible/near-infrared reflectance spectroscopy[J].Meat Science, 2010, 86 (4) :901-907.

    [6]

    PREVOLNIK M, CANDEK-POTOKAR M, SKORJANC D, et al.Predicting intramuscular fat content in pork and beef by near infrared spectroscopy[J].Journal of Near Infrared Spectroscopy, 2005, 13 (2) :77-85.

    [7]

    VILJOEN M, HOFFMAN L C, BRAND T S.Prediction of the chemical composition of mutton with near infrared reflectance spectroscopy[J].Small Ruminant Research, 2007, 69 (1-3) :88-94.

    [8]

    MCDEVITT R M, GAVIN A J, ANDRES S, et al.The ability of visible and near infrared reflectance spectroscopy (NIRS) to predict the chemical composition of ground chicken carcasses and to discriminate between carcasses from different genotypes[J].Journal of Near Infrared Spectroscopy, 2005, 13 (3) :109-117.

    [9] 刘炜, 吴昊旻, 孙东东, 等.近红外光谱分析技术在鲜鸡肉快速检测分析中的应用研究[J].中国家禽, 2009, 31 (2) :8-11.
    [10] 栾东磊, 王玉明, 薛长湖, 等.大黄鱼脂肪含量的近红外光谱快速无损检测[J].中国海洋学报, 2009, 39:59-62.
    [11] 王小燕, 顾赛麒, 刘源, 等.近红外光谱法快速检测带鱼肉中的水分和蛋白质含量[J].食品工业科技, 2012, 33 (5) :317-319.
    [12]

    GAITAN-JURADO A J, ORTIZ-SOMOVILLA V, ESPANA-ESPANA F, et al.Quantitative analysis of pork dry-cured sausages to quality control by NIR spectroscopy[J].Meat Science, 2008, 78 (4) :391-399.

    [13] 杨万颖, 罗美中, 孟海鸥, 等.GB/T9695·11.肉与肉制品氮含量测定[S].北京:中国标准出版社, 2008.
    [14] 吴处森, 贺建华, 郭新东, 等.GB/T9695·7.肉与肉制品总脂肪含量测定[S].北京:中国标准出版社, 2008.
    [15] 陈泽勇, 杨万颖, 罗美中, 等.GB/T9695·15.肉与肉制品水分含量测定[S].北京:中国标准出版社, 2008.
    [16]

    COZZOLINO D, DE MATTOS D, MARTINS V.Visible/near infrared reflectance spectroscopy for predicting composition and tracing system of production of beef muscle[J].Animal Science, 2002, 74:477-484.

计量
  • 文章访问数:  94
  • HTML全文浏览量:  8
  • PDF下载量:  342
  • 被引次数: 0
出版历程
  • 收稿日期:  2012-08-12

目录

    /

    返回文章
    返回
    x 关闭 永久关闭