YANG Qi, WANG Yanling. Investigation on the Transport Mechanism of Penicillium expansum MFS Protein Based on Molecular Dynamics Simulation[J]. Science and Technology of Food Industry, 2023, 44(18): 200−208. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022110341.
Citation: YANG Qi, WANG Yanling. Investigation on the Transport Mechanism of Penicillium expansum MFS Protein Based on Molecular Dynamics Simulation[J]. Science and Technology of Food Industry, 2023, 44(18): 200−208. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022110341.

Investigation on the Transport Mechanism of Penicillium expansum MFS Protein Based on Molecular Dynamics Simulation

More Information
  • Received Date: November 30, 2022
  • Available Online: July 12, 2023
  • The Penicillium expansum produces a toxic secondary metabolite, patulin. The PatC gene encodes the MFS transport protein, and transports the patulin precursor substance to the extracellular space, ultimately forming PAT. This has high reference value in the prevention of patulin. In order to study the transport mechanism of the PatC, the spatial structure of the PatC was predicted by using bioinformatics methods, and the interaction site and possible mechanism of E-ascladiol and the PatC were analyzed by molecular docking and molecular dynamics simulation. The results showed that the gene encoded 546 amino acids, containing 14 transmembrane helix and MFS functional domains. The molecular docking results showed that the protein had 4 binding sites with the E-ascladiol, namely SER353, TYR336, PRO339, and PRO188. Molecular dynamics simulations of 200 ns were performed for the Wild protein complex system and the P188A mutant system. The results showed that the small molecule substrate and the PatC were tightly bound, and that the protein's flexibility changed strongly after forming a complex in the Pro188~Ser197aa and Gly231~Val241aa regions. It could be inferred that these two regions might have functional sites. By analyzing the parameter data of the P188A mutant system, it could be predicted that PRO188 was an important target of the PatC protein, which could provide a basis for subsequent molecular experiments. The results of the research could lay the foundation for exploring the transport mechanism of patulin, and provide new strategies for the prevention of apple rot.
  • [1]
    ZHONG L, CARERE J, LU Z, et al. Patulin in apples and apple-based food products: The burdens and the mitigation strategies[J]. Toxins,2018,10(11):475. doi: 10.3390/toxins10110475
    [2]
    LUCIANO-ROSARIO D, KELLER N P, JURICK W M. Penicillium expansum: Biology, omics, and management tools for a global postharvest pathogen causing blue mould of pome fruit[J]. Mol Plant Pathol,2020,21(11):1391−1404. doi: 10.1111/mpp.12990
    [3]
    TANNOUS J, KELLER N P, ATOUI A, et al. Secondary metabolism in Penicillium expansum: Emphasis on recent advances in patulin research[J]. Crit Rev Food Sci Nutr,2018,58:2082−2098. doi: 10.1080/10408398.2017.1305945
    [4]
    ZHENG X, WEI W, ZHOU W, et al. Prevention and detoxification of patulin in apple and its products: A review[J]. Food Res Int,2021,140:110034. doi: 10.1016/j.foodres.2020.110034
    [5]
    GAO L, ZHANG Q, SUN X, et al. Etiology of moldy core, core browning, and core rot of Fuji apple in China[J]. Plant Disease,2013,97(4):510−516. doi: 10.1094/PDIS-01-12-0024-RE
    [6]
    WANG Z, WANG L, MING Q, et al. Reduction the contamination of patulin during the brewing of apple cider and its characteristics[J]. Food Addit Contam Part A Chem Anal Control Expo Risk Assess,2022,39(6):1149−1162. doi: 10.1080/19440049.2022.2055155
    [7]
    ZHOU T, WANG X, LUO J, et al. Identification of differentially expressed genes involved in spore germination of Penicillium expansum by comparative transcriptome and proteome approaches[J]. Microbiology Open,2018,7(3):e562.
    [8]
    SAJID M, MEHMOOD S, YUAN Y, et al. Mycotoxin patulin in food matrices: Occurrence and its biological degradation strategies[J]. Drug Metab Rev,2019,51(1):105−120. doi: 10.1080/03602532.2019.1589493
    [9]
    PLEADIN J, FRECE J, MARKOV K. Mycotoxins in food and feed[J]. Adv Food Nutr Res,2019,89:297−345.
    [10]
    CHENG M, ZHAO S, LIU H, et al. Functional analysis of a chaetoglobosin A biosynthetic regulator in Chaetomium globosum[J]. Fungal Biol,2021,125(3):201−210. doi: 10.1016/j.funbio.2020.10.010
    [11]
    GUERRA-MORENO A, HANNA J. Induction of proteotoxic stress by the mycotoxin patulin[J]. Toxicol Lett,2017,276:85−91. doi: 10.1016/j.toxlet.2017.05.015
    [12]
    GLASER N, STOPPER H. Patulin: Mechanism of genotoxicity[J]. Food and Chemical Toxicology,2012,50(5):1796−1801. doi: 10.1016/j.fct.2012.02.096
    [13]
    WEI C, YU L, QIAO N, et al. Progress in the distribution, toxicity, control, and detoxification of patulin: A review[J]. Toxicon,2020,184:83−93. doi: 10.1016/j.toxicon.2020.05.006
    [14]
    LI B, CHEN Y, ZHANG Z, et al. Molecular basis and regulation of pathogenicity and patulin biosynthesis in Penicillium expansum[J]. Compr Rev Food Sci Food Saf,2020,19(6):3416−3438. doi: 10.1111/1541-4337.12612
    [15]
    LI B, CHEN Y, ZONG Y, et al. Dissection of patulin biosynthesis, spatial control and regulation mechanism in Penicillium expansum[J]. Environmental Microbiology,2019,21(3):1124−1139. doi: 10.1111/1462-2920.14542
    [16]
    LI B, ZONG Y, DU Z, et al. Genomic characterization reveals insights into patulin biosynthesis and pathogenicity in Penicillium Species[J]. Mol Plant Microbe Interact,2015,28(6):635−647. doi: 10.1094/MPMI-12-14-0398-FI
    [17]
    TANNOUS J, ELKHOURY R, SNINI S P, et al. Physical organization and kinetic expression of the patulin biosynthetic gene cluster from Penicillium expansum[J]. International Journal of Food Microbiology,2014,189:51−60. doi: 10.1016/j.ijfoodmicro.2014.07.028
    [18]
    WANG S C, DAVEJAN P, HENDARGO K J, et al. Expansion of the Major Facilitator Superfamily (MFS) to include novel transporters as well as transmembrane-acting enzymes[J]. Biochim Biophys Acta Biomembr,2020,1862(9):183277. doi: 10.1016/j.bbamem.2020.183277
    [19]
    DE RAMÓN-CARBONELL M, SÁNCHEZ-TORRES P. Penicillium digitatum MFS transporters can display different roles during pathogen-fruit interaction[J]. Int J Food Microbiol,2021,337:108918. doi: 10.1016/j.ijfoodmicro.2020.108918
    [20]
    DREW D, NORTH R, NAGARATHINAM K, et al. Structures and general transport mechanisms by the major facilitator superfamily (MFS)[J]. Chem Rev,2021,121(9):5289−5335. doi: 10.1021/acs.chemrev.0c00983
    [21]
    KUMAR S, LEKSHMI M, PARVATHI A, et al. Functional and structural roles of the major facilitator superfamily bacterial multidrug efflux pumps[J]. Microorganisms,2020,8(2):e266. doi: 10.3390/microorganisms8020266
    [22]
    MADEJ M G, DANG S, YAN N, et al. Evolutionary mix-and-match with MFS transporters[J]. Proc Natl Acad Sci USA,2013,110(15):5870−5874. doi: 10.1073/pnas.1303538110
    [23]
    ALEXANDER N J, MCCORMICK S P, HOHN T M. TRI12, atrichothecene efflux pump from Fusarium sporotrichioides: Geneisolation and expression in yeast[J]. Mol Gen Genet,1999,261(6):977−984. doi: 10.1007/s004380051046
    [24]
    CALLAHAN T M, ROSE M S, MEADE M J, et al. CFP, the putative cercosporin transporter of Cercospora kikuchii, is required for wild type cercosporin production, resistance, and virulence on soybean[J]. Mol Plant Microbe Interact,1999,12(10):901−910. doi: 10.1094/MPMI.1999.12.10.901
    [25]
    LIESCH J M, SWEELEY C C, STAFFELD G D, et al. Structure of HC-toxin, a cyclic tetrapeptide from helminthosporium carbonum[J]. Tetrahedron,1982,38(1):45−48. doi: 10.1016/0040-4020(82)85043-6
    [26]
    PITKIN J W, PANACCIONE D G, WALTON J D. A putative cyclic peptide efflux pump encoded by the TOXA gene of the plant-pathogenic fungus Cochliobolus carbonum[J]. Microbiology (Reading),1996,142(6):1557−1565. doi: 10.1099/13500872-142-6-1557
    [27]
    MOFFAT C S, SEE P T, OLIVER R P. Generation of a ToxA knockout strain of the wheat tan spot pathogen Pyrenophora tritici-repentis[J]. Mol Plant Pathol,2014,15(9):918−926. doi: 10.1111/mpp.12154
    [28]
    MENKE J, DONG Y, KISTLER H C. Fusarium graminearum Tri12p influences virulence to wheat and trichothecene accumulation[J]. Mol Plant Microbe Interact,2012,25(11):1408−1418. doi: 10.1094/MPMI-04-12-0081-R
    [29]
    BRADSHAW R E, BHATNAGAR D, GANLEY R J, et al. Dothistroma pini, a forest pathogen, contains homologs of aflatoxin biosynthetic pathway genes[J]. Appl Environ Microbiol,2002,68:2885−2892. doi: 10.1128/AEM.68.6.2885-2892.2002
    [30]
    王艳玲, 郭小洁, 张紊玮, 等. 棒曲霉素生物合成及分子调控研究进展[J]. 食品科学,2020,41(17):267−274. [WANG Y L, GUO X J, ZHANG W W, et al. Recent advances in patulin biosynthesis and its molecular regulation[J]. Food Science,2020,41(17):267−274.

    WANG Y L, GUO X J, ZHANG W W, et al. Recent Advances in Patulin Biosynthesis and Its Molecular Regulation[J]. Food Science, 2020, 41(17): 267−274.
    [31]
    QUISTGAARD E M, LÖW C, GUETTOU F, et al. Understanding transport by the major facilitator superfamily (MFS): Structures pave the way[J]. Nat Rev Mol Cell Biol,2016,17(2):123−132. doi: 10.1038/nrm.2015.25
    [32]
    钟红梅, 蔡开聪. AutoDock软件在生物化学教学中的应用-半柔性对接[J]. 化学教育(中英文),2020,41(6):86−89. [ZHONG C M, CAI K C. Application of AutoDock software in teaching of biochemistry: Semi-flexible docking[J]. Chinese Journal of Chemical Education,2020,41(6):86−89.

    ZHONG C M, CAI K C. Application of AutoDock software in teaching of biochemistry: Semi-flexible docking[J]. Chinese Journal of Chemical Education, 2020, 41(6): 86−89.
    [33]
    MARCET-HOUBEN M, BALLESTER A R, FUENTE B, et al. Genome sequence of the necrotrophic fungus Penicillium digitatum, the main postharvest pathogen of citrus[J]. BMC Genomics,2012,13:646. doi: 10.1186/1471-2164-13-646
    [34]
    PAULSEN I T, BROWN M H, SKURRAY R A. Proton-dependent multidrug efflux systems[J]. Microbiol Rev,1996,60(4):575−608. doi: 10.1128/mr.60.4.575-608.1996
    [35]
    JIANG D, ZHAO Y, WANG X, et al. Structure of the YajR transporter suggests a transport mechanism based on the conserved motif A[J]. Proc Natl Acad Sci USA,2013,110(36):14664−14669. doi: 10.1073/pnas.1308127110
    [36]
    LAMBERT E, MEHIPOUR A R, SCHMIDT A, et al. Evidence for a trap-and-flip mechanism in a proton-dependent lipid transporter[J]. Nat Commun,2022,13(1):1022. doi: 10.1038/s41467-022-28361-1
    [37]
    SAIER M H. Genome archeology leading to the characterization and classification of transport proteins[J]. Curr Opin Microbiol,1999,2(5):555−561. doi: 10.1016/S1369-5274(99)00016-8
    [38]
    ZHAO Y, MAO G, LIU M, et al. Crystal structure of the E. coli peptide transporter YbgH[J]. Structure,2014,22(8):1152−1160. doi: 10.1016/j.str.2014.06.008
    [39]
    杨萍, 孙益民. 分子动力学模拟方法及其应用[J]. 安徽师范大学学报(自然科学版),2009,32(1):51−54. [YANG P, SUN Y M. Method of molecular dynamics simulation and its application[J]. Journal of Anhui Normal University (Natural Science),2009,32(1):51−54.

    YANG P, SUN Y M. Method of molecular dynamics simulation and its application[J]. Journal of Anhui Normal University, 2009, 32(1): 51−54.
  • Related Articles

    [1]ZHOU Xiaoyue, YAO Lina, TAO Wenchu, BEN Dongxu, ZHAO Fangfang, XUE Yuqing, LI Yanjun, SHU Zhicheng. Effects of Microcrystalline Cellulose Concentration in Complex Colloidal System on Stability of Chestnut Suspension[J]. Science and Technology of Food Industry, 2023, 44(6): 121-127. DOI: 10.13386/j.issn1002-0306.2022080044
    [2]HU Wanting, LUO Man, LU Jieyi, HUANG Yuchun, QIAO Dongling. Preparation and Properties of Agar/Konjac Glucomannan/Ethyl Cellulose Composite Film[J]. Science and Technology of Food Industry, 2022, 43(11): 260-266. DOI: 10.13386/j.issn1002-0306.2021090150
    [3]SONG Zuohui, HOU Hanxue, WANG Wentao, ZHANG Jinli. Preparation, Characterization and in Vitro Release of Agar/Maltodextrin Sustained-release Capsules[J]. Science and Technology of Food Industry, 2021, 42(22): 178-184. DOI: 10.13386/j.issn1002-0306.2021020240
    [4]ZHANG Chenghao, JIANG Zedong, LI Hebin, NI Hui, ZHU Yanbing, LI Qingbiao. Preparation and Characterization of Mutant Arylsulfatase-Modified Agar[J]. Science and Technology of Food Industry, 2021, 42(5): 39-44. DOI: 10.13386/j.issn1002-0306.2019100059
    [5]WANG Zhiguo, ZHONG Chunyan, ZHANG Weimin. Control of Spontaneous Mutation of Komagataeibacter xylinus by Agar[J]. Science and Technology of Food Industry, 2021, 42(4): 103-107,201. DOI: 10.13386/j.issn1002-0306.2020050275
    [6]ZHU Yun-heng, JIANG Ze-dong, NI Hui, ZHU Yan-bing, XIAO An-feng, LI Qing-biao. Study on the Peparation of High Tansparent Agar[J]. Science and Technology of Food Industry, 2019, 40(21): 149-153,158. DOI: 10.13386/j.issn1002-0306.2019.21.024
    [7]AN Ding, ZHANG Qiu-jun, NI Hui, JIANG Ze-dong, XIAO An-feng. Study on Compound of Agar to Exploit Yoghourt Stabilizer[J]. Science and Technology of Food Industry, 2018, 39(15): 219-222,233. DOI: 10.13386/j.issn1002-0306.2018.15.039
    [8]XIE Jian-hua, XIE Bing-qing, ZHANG Li-hong, WANG Wen-cheng, PANG Jie, ZHANG Min. Study on shear rheological properties of Konjac glucomannan and Agar blends[J]. Science and Technology of Food Industry, 2017, (16): 1-4. DOI: 10.13386/j.issn1002-0306.2017.16.001
    [9]LIU Shi-lin, ZHU Feng, LIN Sheng-nan, HUANG Jin-cheng, LI Tian-jiao, WANG Hong-li, LIN Xiang-yang. Research of strength and relaxation properties of agar gel[J]. Science and Technology of Food Industry, 2017, (13): 85-89. DOI: 10.13386/j.issn1002-0306.2017.13.016
    [10]TIAN Fen, OU Kai, GAO Xing-hua, WANG Yin-juan, LI Xiao-hong, WU Wei-du. The rheological properties of agar and their effects on stability of drinking yoghurt[J]. Science and Technology of Food Industry, 2016, (06): 160-163. DOI: 10.13386/j.issn1002-0306.2016.06.024

Catalog

    Article Metrics

    Article views PDF downloads Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return