Citation: | WANG Zhiguo, ZHONG Chunyan, ZHANG Weimin. Control of Spontaneous Mutation of Komagataeibacter xylinus by Agar[J]. Science and Technology of Food Industry, 2021, 42(4): 103-107,201. DOI: 10.13386/j.issn1002-0306.2020050275 |
[1] |
Kallayanee Naloka,Kazunobu Matsushita,Gunjana Theeragool. Enhanced ultrafine nanofibril biosynthesis of bacterial nanocellulose using a low-cost material by the adapted strain of Komagataeibacter xylinus MSKU12[J]. International Journal of Biological Macromolecules,2020,150:1113-1120.
|
[2] |
Yukari Numata,Hiroyuki Kono,Akane Mori,et al. Structural and rheological characterization of bacterial cellulose gels obtained from Gluconacetobacter genus[J]. Food Hydrocolloids,2019,92:233-239.
|
[3] |
Corral M L,Cerrutti P,Vázquez A,et al. Bacterial nanocellulose as a potential additive for wheat bread[J]. Food Hydrocolloids,2017,67:189-196.
|
[4] |
Dourado F,Gama M,Rodrigues A C. A Review on the toxicology and dietetic role of bacterial cellulose[J]. Toxicology Report,2017,4:543-553.
|
[5] |
Padrão J,Gonçalves S,Silva J P,et al. Bacterial cellulose-lactoferrin as an antimicrobial edible packaging[J]. Food Hydrocolloids,2016,58:126-140.
|
[6] |
Wang J,Tavakoli J,Tang Y. Bacterial cellulose production,properties and applications with different culture methods-A review[J]. Carbohydrate Polymers,2019,219(1):63-76.
|
[7] |
Magdalena Kołaczkowska,Piotr Siondalski,Maciej Michał Kowalik,et al. Assessment of the usefulness of bacterial cellulose produced by Gluconacetobacter xylinus E25 as a new biological implant[J]. Materials Science and Engineering:C,2019,97:302-312.
|
[8] |
Paria Sadat Lavasani,Elahe Motevaseli,Nafiseh Sadat Sanikhani,et al. Komagataeibacter xylinus as a novel probiotic candidate with high glucose conversion rate properties[J]. Heliyon,2019,5(4):1-10.
|
[9] |
Nadia Halib,Ishak Ahmad,Mario Grassi,et al. The remarkable three-dimensional network structure of bacterial cellulose for tissue engineering applications[J]. International Journal of Pharmaceutics,2019,566:631-640.
|
[10] |
Vu Tuan Nguyen,Bernadine Flanagan,Deirdre Mikkelsen,et al. Spontaneous mutation results in lower cellulose production by a Gluconacetobacter xylinus strain from Kombucha[J]. Carbohydrate Polymers,2010,80(2):337-343.
|
[11] |
Dong Hoon Hur,Hong-Soon Rhee,Jae Hyung Lee,et al. Enhanced production of cellulose in Komagataeibacter xylinus by preventing insertion of IS element into cellulose synthesis gene[J].Biochemical Engineering Journal,2020,156:1-10.
|
[12] |
Pornchanok Taweecheep,Kallayanee Naloka,Minenosuke Matsutani,et al. Superfine bacterial nanocellulose produced by reverse mutations in the bcsC gene during adaptive breeding of Komagataeibacter oboediens[J]. Carbohydrate Polymers,2019,226:1-8.
|
[13] |
吴谦,谢必祺,刘耀谦,等. 木葡糖醋杆菌静置培养中的衰退现象初探[J]. 中国酿造,2013,254(5):19-21.
|
[14] |
Wang Z G,Xiang D,Wang X B,et al. Preparation of an inoculum of Gluconacetobacter xylinus without mutants in shaken culture[J]. Journal of Applied Microbiology,2016,121:713-720.
|
[15] |
李少慧. 细菌纤维素生物合成的调控及其红曲霉菌复合发酵的研究[D]. 武汉:华中科技大学,2012.
|
[16] |
Chao Yaping,Makoto Mitarai,Yasushi Sugano,et al. Effect of addition of water-soluble polysaccharides on bacterial cellulose production in a 50-L airlift reactor[J]. Biotechnology Progress,2001,17(4):781-785.
|
[17] |
Kuan-Chen Cheng,Jeffrey M,Catchmark,et al. Effect of different additives on bacterial cellulose production by Acetobacter xylinum and analysis of material property[J]. Cellulose,2009,16(6):1033-1045.
|
[18] |
Erika F Souza,Maraysa R Furtado,Carlos W P Carvalho,et al.Production and characterization of Gluconacetobacter xylinus bacterial cellulose using cashew apple juice and soybean molasses[J]. International Journal of Biological Macromolecules,2020,146:285-289.
|
[19] |
沈新元. 高分子材料与工程专业实验教程[M]. 第二版. 北京:中国纺织工业出版社,2010:62.
|
[20] |
胡英,李喆,柯勤飞,等. 天然纤维素结晶结构的表征[J].合成纤维工业,2018,41(3):7881.
|
[21] |
颜志勇,王华平,陈仕艳,等. 细菌纤维素的晶体结构[J].材料导报,2008,22(8):127-130.
|
[22] |
Karol Fijałkowski,Anna ywicka,Radosław Drozd,et al. Effect of Gluconacetobacter xylinus cultivation conditions on the selected properties of bacterial cellulose[J]. Polish Journal of Chemical Technology,2016,18(4):117-123.
|
[23] |
Czaja W,Romanovicz D,Brown RM. Structural investigations of microbial cellulose produced in stationary and agitated culture[J]. Cellulose,2004,11(3):403-411.
|
[24] |
Kenji Tajima,Katsutoshi Nakajima,Hitomi Yamashita,et al. Cloning and sequencing of the beta-glucosidase gene from Acetobacter xylinum ATCC 23769[J]. DNA Research,2001,8(6):263-269.
|
[25] |
Coucheron D H. An Acetobacter xylinum insertion sequence element associated with inactivation of cellulose production[J]. Journal of Bacteriology,1991,173(18):5723-5731.
|
[26] |
Cook K E,Colvin J R. Evidence for a beneficial influence of cellulose production on growth of Acetobacter xylinum in liquid medium[J]. Current Microbiology,1980,3:203-205.
|
[27] |
Valla S,Kjosbakken J. Cellulose-negative mutants of Acetobacter xylinum[J]. Journal of General Microbiology,1982,28:1401-1408.
|
[28] |
Jung J Y,Park J K,Chang H N. Bacterial cellulose production by Gluconacetobacter hansenii in an agitated culture without living non-cellulose producing cells[J]. Enzyme and Microbial Technology,2005,37(3):347-354.
|
1. |
李宁洁,景炳年,王伟,刘雨晴,谢晓阳,董跟来,王学方,魏磊. 五月艾营养成分、活性物质及重金属含量测定与分析. 生物技术进展. 2025(01): 102-109 .
![]() | |
2. |
景炳年,常霞,魏磊,谢晓阳,周雍,王志尧,刘雨晴,王伟. 博爱县赤松茸营养成分、生物活性物质及重金属含量分析与评价. 食品工业科技. 2022(04): 278-285 .
![]() | |
3. |
吴孟华,邓静,张英,李杰,黄建香,林泽斌,曹晖. 岭南鲍姑艾(红脚艾)的品种考证. 中药材. 2022(01): 235-241 .
![]() | |
4. |
农彦贤,郝红梅,叶志杰,彭慎,谭冬明,李玉英. 红蓝草主要营养成分分析与评价. 广东化工. 2021(10): 234-237 .
![]() | |
5. |
沈宏桂,刘立萍,罗宏泉,陈慧,贺鹏. ICP-AES法对怀化地区艾草的21种矿质元素分析. 农业与技术. 2021(20): 74-76 .
![]() | |
6. |
梅瑜,徐世强,顾艳,孙铭阳,周芳,李静宇,张闻婷,王继华. 红脚艾蒿的转录组解析. 广东农业科学. 2021(12): 174-180 .
![]() |