Citation: | WANG Zhiguo, ZHONG Chunyan, ZHANG Weimin. Control of Spontaneous Mutation of Komagataeibacter xylinus by Agar[J]. Science and Technology of Food Industry, 2021, 42(4): 103-107,201. DOI: 10.13386/j.issn1002-0306.2020050275 |
[1] |
Kallayanee Naloka,Kazunobu Matsushita,Gunjana Theeragool. Enhanced ultrafine nanofibril biosynthesis of bacterial nanocellulose using a low-cost material by the adapted strain of Komagataeibacter xylinus MSKU12[J]. International Journal of Biological Macromolecules,2020,150:1113-1120.
|
[2] |
Yukari Numata,Hiroyuki Kono,Akane Mori,et al. Structural and rheological characterization of bacterial cellulose gels obtained from Gluconacetobacter genus[J]. Food Hydrocolloids,2019,92:233-239.
|
[3] |
Corral M L,Cerrutti P,Vázquez A,et al. Bacterial nanocellulose as a potential additive for wheat bread[J]. Food Hydrocolloids,2017,67:189-196.
|
[4] |
Dourado F,Gama M,Rodrigues A C. A Review on the toxicology and dietetic role of bacterial cellulose[J]. Toxicology Report,2017,4:543-553.
|
[5] |
Padrão J,Gonçalves S,Silva J P,et al. Bacterial cellulose-lactoferrin as an antimicrobial edible packaging[J]. Food Hydrocolloids,2016,58:126-140.
|
[6] |
Wang J,Tavakoli J,Tang Y. Bacterial cellulose production,properties and applications with different culture methods-A review[J]. Carbohydrate Polymers,2019,219(1):63-76.
|
[7] |
Magdalena Kołaczkowska,Piotr Siondalski,Maciej Michał Kowalik,et al. Assessment of the usefulness of bacterial cellulose produced by Gluconacetobacter xylinus E25 as a new biological implant[J]. Materials Science and Engineering:C,2019,97:302-312.
|
[8] |
Paria Sadat Lavasani,Elahe Motevaseli,Nafiseh Sadat Sanikhani,et al. Komagataeibacter xylinus as a novel probiotic candidate with high glucose conversion rate properties[J]. Heliyon,2019,5(4):1-10.
|
[9] |
Nadia Halib,Ishak Ahmad,Mario Grassi,et al. The remarkable three-dimensional network structure of bacterial cellulose for tissue engineering applications[J]. International Journal of Pharmaceutics,2019,566:631-640.
|
[10] |
Vu Tuan Nguyen,Bernadine Flanagan,Deirdre Mikkelsen,et al. Spontaneous mutation results in lower cellulose production by a Gluconacetobacter xylinus strain from Kombucha[J]. Carbohydrate Polymers,2010,80(2):337-343.
|
[11] |
Dong Hoon Hur,Hong-Soon Rhee,Jae Hyung Lee,et al. Enhanced production of cellulose in Komagataeibacter xylinus by preventing insertion of IS element into cellulose synthesis gene[J].Biochemical Engineering Journal,2020,156:1-10.
|
[12] |
Pornchanok Taweecheep,Kallayanee Naloka,Minenosuke Matsutani,et al. Superfine bacterial nanocellulose produced by reverse mutations in the bcsC gene during adaptive breeding of Komagataeibacter oboediens[J]. Carbohydrate Polymers,2019,226:1-8.
|
[13] |
吴谦,谢必祺,刘耀谦,等. 木葡糖醋杆菌静置培养中的衰退现象初探[J]. 中国酿造,2013,254(5):19-21.
|
[14] |
Wang Z G,Xiang D,Wang X B,et al. Preparation of an inoculum of Gluconacetobacter xylinus without mutants in shaken culture[J]. Journal of Applied Microbiology,2016,121:713-720.
|
[15] |
李少慧. 细菌纤维素生物合成的调控及其红曲霉菌复合发酵的研究[D]. 武汉:华中科技大学,2012.
|
[16] |
Chao Yaping,Makoto Mitarai,Yasushi Sugano,et al. Effect of addition of water-soluble polysaccharides on bacterial cellulose production in a 50-L airlift reactor[J]. Biotechnology Progress,2001,17(4):781-785.
|
[17] |
Kuan-Chen Cheng,Jeffrey M,Catchmark,et al. Effect of different additives on bacterial cellulose production by Acetobacter xylinum and analysis of material property[J]. Cellulose,2009,16(6):1033-1045.
|
[18] |
Erika F Souza,Maraysa R Furtado,Carlos W P Carvalho,et al.Production and characterization of Gluconacetobacter xylinus bacterial cellulose using cashew apple juice and soybean molasses[J]. International Journal of Biological Macromolecules,2020,146:285-289.
|
[19] |
沈新元. 高分子材料与工程专业实验教程[M]. 第二版. 北京:中国纺织工业出版社,2010:62.
|
[20] |
胡英,李喆,柯勤飞,等. 天然纤维素结晶结构的表征[J].合成纤维工业,2018,41(3):7881.
|
[21] |
颜志勇,王华平,陈仕艳,等. 细菌纤维素的晶体结构[J].材料导报,2008,22(8):127-130.
|
[22] |
Karol Fijałkowski,Anna ywicka,Radosław Drozd,et al. Effect of Gluconacetobacter xylinus cultivation conditions on the selected properties of bacterial cellulose[J]. Polish Journal of Chemical Technology,2016,18(4):117-123.
|
[23] |
Czaja W,Romanovicz D,Brown RM. Structural investigations of microbial cellulose produced in stationary and agitated culture[J]. Cellulose,2004,11(3):403-411.
|
[24] |
Kenji Tajima,Katsutoshi Nakajima,Hitomi Yamashita,et al. Cloning and sequencing of the beta-glucosidase gene from Acetobacter xylinum ATCC 23769[J]. DNA Research,2001,8(6):263-269.
|
[25] |
Coucheron D H. An Acetobacter xylinum insertion sequence element associated with inactivation of cellulose production[J]. Journal of Bacteriology,1991,173(18):5723-5731.
|
[26] |
Cook K E,Colvin J R. Evidence for a beneficial influence of cellulose production on growth of Acetobacter xylinum in liquid medium[J]. Current Microbiology,1980,3:203-205.
|
[27] |
Valla S,Kjosbakken J. Cellulose-negative mutants of Acetobacter xylinum[J]. Journal of General Microbiology,1982,28:1401-1408.
|
[28] |
Jung J Y,Park J K,Chang H N. Bacterial cellulose production by Gluconacetobacter hansenii in an agitated culture without living non-cellulose producing cells[J]. Enzyme and Microbial Technology,2005,37(3):347-354.
|
[1] | LI Tingren, ZHAO Jinshan, ZANG Jinhong, PENG Chuantao, ZHANG Peng, ZHAO Jiayi. Analysis of Safe Quality Characteristics of Traditional Fermentation and Inoculation Fermented Sour Meat[J]. Science and Technology of Food Industry, 2022, 43(15): 257-264. DOI: 10.13386/j.issn1002-0306.2021100085 |
[2] | SONG Zuohui, HOU Hanxue, WANG Wentao, ZHANG Jinli. Preparation, Characterization and in Vitro Release of Agar/Maltodextrin Sustained-release Capsules[J]. Science and Technology of Food Industry, 2021, 42(22): 178-184. DOI: 10.13386/j.issn1002-0306.2021020240 |
[3] | ZHANG Chenghao, JIANG Zedong, LI Hebin, NI Hui, ZHU Yanbing, LI Qingbiao. Preparation and Characterization of Mutant Arylsulfatase-Modified Agar[J]. Science and Technology of Food Industry, 2021, 42(5): 39-44. DOI: 10.13386/j.issn1002-0306.2019100059 |
[4] | GU Xiao-lu, XIE Yue-jie, XIONG Zheng-wei, WANG Zhong-ming, CHEN Hai-yang, RUAN Mei-lan, JIANG Mei-na, WANG Qiang. Effect of Strain Inoculation Methods on the Quality of Soybean Paste[J]. Science and Technology of Food Industry, 2020, 41(10): 118-123,130. DOI: 10.13386/j.issn1002-0306.2020.10.020 |
[5] | ZHU Yun-heng, JIANG Ze-dong, NI Hui, ZHU Yan-bing, XIAO An-feng, LI Qing-biao. Study on the Peparation of High Tansparent Agar[J]. Science and Technology of Food Industry, 2019, 40(21): 149-153,158. DOI: 10.13386/j.issn1002-0306.2019.21.024 |
[6] | CHEN Da-peng, ZHENG Ya, ZHOU Yun, WANG Xiao-xuan, SONG Yong-qiang, SHI Li-xue. Quality Comparison of Pickled Cabbage Fermented by Natural Fermentation and Artificial Inoculation[J]. Science and Technology of Food Industry, 2019, 40(18): 368-372. DOI: 10.13386/j.issn1002-0306.2019.18.058 |
[7] | AN Ding, ZHANG Qiu-jun, NI Hui, JIANG Ze-dong, XIAO An-feng. Study on Compound of Agar to Exploit Yoghourt Stabilizer[J]. Science and Technology of Food Industry, 2018, 39(15): 219-222,233. DOI: 10.13386/j.issn1002-0306.2018.15.039 |
[8] | XIE Jian-hua, XIE Bing-qing, ZHANG Li-hong, WANG Wen-cheng, PANG Jie, ZHANG Min. Study on shear rheological properties of Konjac glucomannan and Agar blends[J]. Science and Technology of Food Industry, 2017, (16): 1-4. DOI: 10.13386/j.issn1002-0306.2017.16.001 |
[9] | LIU Shi-lin, ZHU Feng, LIN Sheng-nan, HUANG Jin-cheng, LI Tian-jiao, WANG Hong-li, LIN Xiang-yang. Research of strength and relaxation properties of agar gel[J]. Science and Technology of Food Industry, 2017, (13): 85-89. DOI: 10.13386/j.issn1002-0306.2017.13.016 |
[10] | JIN Le-tian, WU Shi-rong, LIU Tong-jie, HE Guo-qing. Effect of Lactobacillus plantarum inoculated fermentation on the quality of kimchi[J]. Science and Technology of Food Industry, 2014, (23): 195-198. DOI: 10.13386/j.issn1002-0306.2014.23.032 |