MAI Tingting, GAO Mengxiang, LI Li, et al. Research Progress on the Regulation of Magnetic Field on the Growth and Development of Filamentous Fungi and the Synthesis of Metabolites[J]. Science and Technology of Food Industry, 2023, 44(13): 450−457. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022090173.
Citation: MAI Tingting, GAO Mengxiang, LI Li, et al. Research Progress on the Regulation of Magnetic Field on the Growth and Development of Filamentous Fungi and the Synthesis of Metabolites[J]. Science and Technology of Food Industry, 2023, 44(13): 450−457. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022090173.

Research Progress on the Regulation of Magnetic Field on the Growth and Development of Filamentous Fungi and the Synthesis of Metabolites

More Information
  • Received Date: September 15, 2022
  • Available Online: April 23, 2023
  • Magnetic field, as a ubiquitous environmental factor, affects the growth and metabolism of microorganisms. Filamentous fungi are important heterotrophic eukaryotes, which are widely used in food industry and biomedical field. At present, magnetic field treatment of filamentous fungi has become an important research target in industry, and Monascus, Aspergillus niger and Aspergillus flavus are typical strains commonly used by filamentous fungi. This paper introduces the research progress of magnetic field regulating the growth and metabolism of Monascus, Aspergillus niger, Aspergillus flavus and other filamentous fungi, analyzes the magnetic field effect of three kinds of filamentous fungi through different magnetic field types, action time, magnetic field intensity and other magnetic field parameters, and expounds the rule of influence of magnetic field on the growth and development of three typical filamentous fungi and their metabolites and metabolic relationship. The research idea of magnetic field regulating filamentous fungi metabolites in many aspects and at multiple levels is discussed. The next step will be to explain the mechanism of magnetic field on filamentous fungi mycelia morphology, enzyme structure changes and transcriptomics, which will provide a reference for exploring the mechanism of magnetic field regulating filamentous fungi metabolites synthesis, and provide a theoretical basis for the comprehensive utilization and development of filamentous fungi.
  • [1]
    QIN S Y, YIN H, YANG C L, et al. A magnetic protein biocompass[J]. Nature Materials,2016,15(2):217−226. doi: 10.1038/nmat4484
    [2]
    ZHANG X, YAREMA K, XU A. Impact of static magnetic field (SMF) on microorganisms, plants and animals[J]. Biological Effects of Static Magnetic Fields,2017:133−172.
    [3]
    CAO Y P, YANG X L, WANG C T, et al. Effect of nonionic surfactant Brij 35 on morphology, cloud point, and pigment stability in Monascus extractive fermentation[J]. Journal of the Science of Food and Agriculture,2020,100(12):4521−4530. doi: 10.1002/jsfa.10493
    [4]
    周康熙, 陈颖, 倪莉. 红曲霉分离纯化、分类和鉴定研究进展[J]. 中国酿造,2021,40(1):7−13. [ZHOU K X, CHEN Y, NI L. Research progress in isolation, purification, classification and identification of Monascus[J]. China Brewing,2021,40(1):7−13. doi: 10.11882/j.issn.0254-5071.2021.01.002

    ZHOU K X, CHEN Y, NI L. Research progress in isolation, purification, classification and identification of Monascus[J]. China Brewing, 2021, 40(1): 7-13. doi: 10.11882/j.issn.0254-5071.2021.01.002
    [5]
    代文婷, 吴宏, 郭安民. 红曲霉在酿酒行业中的应用研究进展[J]. 食品与发酵工业,2018,44(1):280−284. [DAI W T, WU H, GUO A M. Research progress of Monascus application in brewing industry[J]. Food and Fermentation Industries,2018,44(1):280−284. doi: 10.13995/j.cnki.11-1802/ts.015497

    DAI W T, WU H, GUO A M. Research progress of Monascus application in brewing industry[J]. Food and Fermentation Industries, 2018, 44(1): 280-284. doi: 10.13995/j.cnki.11-1802/ts.015497
    [6]
    HE J T, JIA M X, LI W, et al. Toward improvements for enhancement the productivity and color value of Monascus pigments: A critical review with recent updates[J]. Critical reviews in Food Science and Nutrition,2022,62(26):7139−7153. doi: 10.1080/10408398.2021.1935443
    [7]
    ZHANG C, CHEN M X, ZANG Y M, et al. Effect of arginine supplementation on monacolin K yield of Monascus purpureus[J]. Journal of Food Composition and Analysis,2022,106:104−252.
    [8]
    SHI J, QIN X L, ZHAO Y R, et al. Strategies to enhance the production efficiency of Monascus pigments and control citrinin contamination[J]. Process Biochemistry,2022,117:19−29. doi: 10.1016/j.procbio.2022.03.003
    [9]
    李培睿, 张晓伟, 曹依曼. 红曲霉桔霉素的检测和控制方法研究进展[J]. 中国食品添加剂,2021,33(3):100−105. [LI P R, ZHANG X W, CAO Y M. Research progress on detection and control methods of Monascus citrinin[J]. China Food Additives,2021,33(3):100−105. doi: 10.19804/j.issn1006-2513.2021.03.017

    LI P R, ZHANG X W, CAO Y M. Research progress on detection and control methods of Monascus citrinin[J]. China Food Additives, 2021, 33(3): 100-105. doi: 10.19804/j.issn1006-2513.2021.03.017
    [10]
    韩红霞, 曾冬杰, 万云雷, 等. 低频磁场对紫红曲菌生理生化特性的影响[J]. 食品科技,2015,40(7):45−49. [HAN H X, ZENG D J, WAN Y L, et al. Effect of low frequency magnetic field on physiological and biochemical characteristics of Monascus purpureus[J]. Food Science and Technology,2015,40(7):45−49. doi: 10.13684/j.cnki.spkj.2015.07.010

    HAN H X, ZENG D J, WAN Y L, et al. Effect of low frequency magnetic field on physiological and biochemical characteristics of Monascus purpureus[J]. Food Science and Technology, 2015, 40(7): 45-49. doi: 10.13684/j.cnki.spkj.2015.07.010
    [11]
    CHEN F H, YANG S Y, XIONG J, et al. Effect of static magnetic field on Monascus ruber M7 based on transcriptome analysis[J]. Journal of Fungi,2021,7(4):256. doi: 10.3390/jof7040256
    [12]
    邓光武, 夏帆, 王洁雅, 等. 低频交变磁场对红曲霉固态发酵生物量的影响[J]. 农业机械学报,2012,43(6):128−132. [DENG G W, XIA F, WANG J Y, et al. Effect of low frequency alternating magnetic field on solid state fermentation biomass of Monascus[J]. Transactions of the Chinese Society for Agricultural Machinery,2012,43(6):128−132. doi: 10.6041/j.issn.1000-1298.2012.06.024

    DENG G W, XIA F, WANG J Y, et al. Effect of low frequency alternating magnetic field on solid state fermentation biomass of Monascus[J]. Transactions of the Chinese Society for Agricultural Machinery, 2012, 43(6): 128-132. doi: 10.6041/j.issn.1000-1298.2012.06.024
    [13]
    万云雷, 韩红霞, 李利, 等. 低频磁场对紫色红曲菌固态发酵产γ-氨基丁酸的影响[J]. 中国农业科技导报,2015,17(5):94−98. [WAN Y L, HAN H X, LI L, et al. Effect of low frequency magnetic field on γ-aminobutyric acid of Monascus purpureus in solid state fermentation[J]. Journal of Agricultural Science and Technology,2015,17(5):94−98.

    WAN Y L, HAN H X, LI L, et al. Effect of low frequency magnetic field on γ-aminobutyric acid of Monascus purpureus in solid state fermentation[J]. Journal of Agricultural Science and Technology, 2015, 17(5): 94-98.
    [14]
    WAN Y L, ZHANG J L, HAN H X, et al. Citrinin-producing capacity of Monascus purpureus in response to low-frequency magnetic fields[J]. Process Biochemistry,2017,53:25−29. doi: 10.1016/j.procbio.2016.11.009
    [15]
    ZHOU H, YANG S, CHEN F. The magnetic receptor of Monascus ruber M7: Gene clone and its heterologous expression in Escherichia coli[J]. Frontiers in Microbiology,2020,11:11−12.
    [16]
    XIONG X Q, LIU Y B, ZHANG J L, et al. Mutational analysis of MpPhy reveals magnetoreception and photosensitivity involvement in secondary metabolites biosynthesis in Monascus purpureus[J]. Journal of Photochemistry and Photobiology B: Biology,2021,217:112−164.
    [17]
    CHEN S, SU D X, GAO M X, et al. A facile macroporous resin-based method for separation of yellow and orange Monascus pigments[J]. Food Science and Biotechnology,2021,30(4):545−553. doi: 10.1007/s10068-021-00892-1
    [18]
    ZHANG C, ZHANG H, ZHU Q Q, et al. Overexpression of global regulator LaeA increases secondary metabolite production in Monascus purpureus[J]. Applied Microbiology and Biotechnology,2020,104(7):3049−3060. doi: 10.1007/s00253-020-10379-4
    [19]
    高梦祥, 夏帆, 胡秋冬. 交变磁场对啤酒酵母的生长促进效应[J]. 农业机械学报,2007(7):91−93. [GAO M X, XIA F, HU Q D, et al. Effect of alternating magnetic field on growth of beer yeast[J]. Transactions of the Chinese Society for Agricultural Machinery,2007(7):91−93. doi: 10.3969/j.issn.1000-1298.2007.07.025

    GAO M X, XIA F, HU X D, et al. Effect of alternating magnetic field on growth of beer yeast[J]. Transactions of the Chinese Society for Agricultural Machinery, 2007(7): 91-93. doi: 10.3969/j.issn.1000-1298.2007.07.025
    [20]
    ZHANG J L, ZENG D J, XU C, et al. Effect of low-frequency magnetic field on formation of pigments of Monascus purpureus[J]. European Food Research and Technology,2015,240(3):577−582. doi: 10.1007/s00217-014-2358-x
    [21]
    LIAO Q, LIU Y B, ZHANG J L, et al. A low-frequency magnetic field regulates Monascus pigments synthesis via reactive oxygen species in M. purpureus[J]. Process Biochemistry,2019,86:16−24. doi: 10.1016/j.procbio.2019.08.009
    [22]
    LIU Q P, XIE N N, HE Y, et al. MpigE, a gene involved in pigment biosynthesis in Monascus ruber M7[J]. Applied Microbiology and Biotechnology,2014,98(1):285−296. doi: 10.1007/s00253-013-5289-8
    [23]
    XIONG X Q, ZHEN Z X, LIU Y B, et al. Low-frequency magnetic field of appropriate strengths changed secondary metabolite production and Na+ concentration of intracellular and extracellular Monascus purpureus[J]. Bioelectromagnetics,2020,41(4):289−297. doi: 10.1002/bem.22262
    [24]
    HALTTUNEN T, SALMINEN S, TAHVONEN R. Rapid removal of lead and cadmium from water by specific lactic acid bacteria[J]. International Journal of Food Microbiology,2007,114(1):30−35. doi: 10.1016/j.ijfoodmicro.2006.10.040
    [25]
    KUROKAWA H, ITO H, MATSUI H. Monascus purpureus induced apoptosis on gastric cancer cell by scavenging mitochondrial reactive oxygen species[J]. Journal of Clinical Biochemistry and Nutrition,2017,61(3):17−27.
    [26]
    HUANG J, LIAO N Q, LI H M. Linoleic acid enhance the production of moncolin K and red pigments in Monascus ruber by activating mokH and mokA, and by accelerating cAMP-PKA pathway[J]. International Journal of Biological Macromolecules,2018,109:950−954. doi: 10.1016/j.ijbiomac.2017.11.074
    [27]
    PENG L, AISIKAER A, LIU S P, et al. Effects of Chinese medicines on monacolin K production and related genes transcription of Monascus ruber in red mold rice fermentation[J]. Food Science & Nutrition,2020,8(4):2134−2142.
    [28]
    HUANG Z B, ZHANG L J, GAO H, et al. Soybean isoflavones reduce citrinin production by Monascus aurantiacus Li AS3.4384 in liquid state fermentation using different media[J]. Journal of the Science of Food and Agriculture,2019,99(10):4772−4780. doi: 10.1002/jsfa.9723
    [29]
    MAGRO M M, MORITZ D E, BONAIUTO E, et al. Citrinin mycotoxin recognition and removal by naked magnetic nanoparticles[J]. Food Chemistry,2016,203:505−512. doi: 10.1016/j.foodchem.2016.01.147
    [30]
    ZHANG J L, LIU Y B, LI L, et al. iTRAQ-based quantitative proteomic analysis reveals changes in metabolite biosynthesis in Monascus purpureus in response to a low-frequency magnetic field[J]. Toxins,2018,10(11):440. doi: 10.3390/toxins10110440
    [31]
    陈美榕, 张梦薇, 刘舒雯, 等. 黑曲霉中生物合成赭曲霉毒素A的非核糖体肽合成酶基因的鉴定[J]. 菌物学报,2020,39(3):556−565. [CHEN M R, ZHANG M W, LIU S W, et al. Identification of nonribosomal peptide synthase gene for biosynthesis of ochratoxin A in Aspergillus niger[J]. Mycosystema,2020,39(3):556−565. doi: 10.13346/j.mycosystema.190275

    CHEN M R, ZHANG M W, LIU S W, et al. Identification of nonribosomal peptide synthase gene for biosynthesis of ochratoxin A in Aspergillus niger[J]. Mycosystema, 2020, 39(3): 556-565. doi: 10.13346/j.mycosystema.190275
    [32]
    PATEL H, CHAPLA D, DIVECHA J, et al. Improved yield of α-L-arabinofuranosidase by newly isolated Aspergillus niger ADH-11 and synergistic effect of crude enzyme on saccharification of maize stover[J]. Bioresources and Bioprocessing,2015,2(1):1−14. doi: 10.1186/s40643-014-0030-8
    [33]
    MONEY N P. Hyphal and mycelial consciousness: The concept of the fungal mind[J]. Fungal Biology,2021,125(4):257−259. doi: 10.1016/j.funbio.2021.02.001
    [34]
    VILLALPANDA M A, ALFONSO S F B, MORALES E B. Quantification of superficial growth and the pigmentation of filamentous fungi by effect of oscillating magnetic field[J]. Revista CENIC Ciencias Biológicas,2022,53(2):126−139.
    [35]
    MANOLIU A, OPRICA L. The protein content in cellulolytic fungi Trichoderma viride and Chaetomium globosum exposed at static and electromagnetic fields[J]. Journal of Experimental and Molecular Biology, 2008, 9(3).
    [36]
    VOINA A, RADU E, CARAMITU A R, et al. Influences of 50 Hz electric fields on growth and multiplication of some microorganisms[J]. Journal of Sustainable Energy,2016,7(2):62−66.
    [37]
    ANAYA M, GÁMEZ E E, VALDÉS O, et al. Effect of the oscillating magnetic field on airborne fungal[J]. Archives of Microbiology,2021,203(5):2139−2145. doi: 10.1007/s00203-021-02193-x
    [38]
    邢诒存, 周一帆. 低频磁场对微生物影响的探讨[J]. 海南师范学院学报,2001,14(4):34−39. [XING Y C, ZHOU Y F. Discussion on the effect of low frequency magnetic field on microorganisms[J]. Journal of Hainan Teachers College,2001,14(4):34−39.

    XING Y C, ZHOU Y F. Discussion on the effect of low frequency magnetic field on microorganisms[J]. Journal of Hainan Teachers College, 2001, 14(4): 34-39.
    [39]
    MATEESCU C, BURUNTEA N, STANCU N. Investigation of Aspergillus niger growth and activity in a static magnetic flux density field[J]. Romanian Biotechnological Letters,2011,16(4):6364−6368.
    [40]
    ABONEIMA S, METWALLY E M. Effect of extremely low frequency magnetic field in growth, CM case, electric conductivity and DNA of Aspergillus niger[J]. Egyptian Journal of Physics,2021,49(1):15−34.
    [41]
    许喜林, 郭祀远, 李琳. 动态磁场对微生物的作用[J]. 华南理工大学学报(自然科学版),2006,34(12):47−50. [XU X L, GUO S Y, LI L. Effect of dynamic magnetic field on microorganisms[J]. Journal of South China University of Technology (Natural Science Edition),2006,34(12):47−50. doi: 10.3321/j.issn:1000-565X.2006.12.010

    XU X L, GUO S Y, LI L. Effect of dynamic magnetic field on microorganisms[J]. Journal of South China University of Technology (Natural Science Edition), 2006, 34(12): 47-50. doi: 10.3321/j.issn:1000-565X.2006.12.010
    [42]
    SUN X W, WU H F, ZHAO G H, et al. Morphological regulation of Aspergillus niger to improve citric acid production by chsC gene silencing[J]. Bioprocess and Biosystems Engineering,2018,41(7):1029−1038. doi: 10.1007/s00449-018-1932-1
    [43]
    FIEDUREK J. Influence of a pulsed electric field on the spores and oxygen consumption of Aspergillus niger and its citric acid production[J]. Acta Biotechnologica,1999,19(2):179−186. doi: 10.1002/abio.370190214
    [44]
    MAKAROV I O, KLYUEV D A, SMIRNOV V F, et al. Effect of low-frequency pulsed magnetic field and low-level laser radiation on oxidoreductase activity and growth of fungi-active destructors of polymer materials[J]. Microbiology,2019,88(1):72−78. doi: 10.1134/S0026261719010053
    [45]
    GAO M X, ZHANG J L, FENG H. Extremely low frequency magnetic field effects on metabolite of Aspergillus niger[J]. Bioelectromagnetics,2011,32(1):73−78. doi: 10.1002/bem.20619
    [46]
    ALI Z A, YAHYA A G I, JABIR A W S. The effect of static magnetic field on growth and biochemical indices of five fungal genera[J]. Journal of Biotechnology Research Center,2014,8(3):28−36.
    [47]
    POTENZA L, SALTARELLI R, POLIDORI E, et al. Effect of 300 mT static and 50 Hz 0.1 mT extremely low frequency magnetic fields onTuber borchii mycelium[J]. Canadian Journal of Microbiology,2012,58(10):1174−1182. doi: 10.1139/w2012-093
    [48]
    TASKIN M, ESIM N, GENISEL M, et al. Enhancement of invertase production by Aspergillus niger OZ-3 using low-intensity static magnetic fields[J]. Preparative Biochemistry and Biotechnology,2013,43(2):177−188. doi: 10.1080/10826068.2012.713431
    [49]
    YAVUZ H, ELEBI S S. Effects of magnetic field on activity of activated sludge in wastewater treatment[J]. Enzyme and Microbial Technology,2000,26(1):22−27. doi: 10.1016/S0141-0229(99)00121-0
    [50]
    LIU M, GAO H, SHANG P, et al. Magnetic field is the dominant factor to induce the response of Streptomyces avermitilis in altered gravity simulated by diamagnetic levitation[J]. PLoS One,2017,6(10):e24697.
    [51]
    PEA C, BUITRAGO D, LUNA H. Influence of a low-frequency magnetic field on the growth of microorganisms in activated sludge[J]. Nature Environment and Pollution Technology,2019,18(2):587−592.
    [52]
    ABDELHAMEED A E. Growth rate inhibtion of some spoilage fungi of food by magnetic field[J]. Misr Journal of Agricultural Engineering,2014,31(1):299−308. doi: 10.21608/mjae.2014.100004
    [53]
    徐丹, 卫梦绮, 李亚俊, 等. 孜然精油对产毒黄曲霉的抑制活性研究[J]. 天然产物研究与开发,2018,30(9):1601−1607. [XU D, WEI M Q, LI Y J, et al. Study on inhibitory activity of cumin essential oil against Aspergillus flavus[J]. Natural Product Research and Development,2018,30(9):1601−1607. doi: 10.16333/j.1001-6880.2018.9.022

    XU D, WEI M Q, LI Y J, et al. Study on inhibitory activity of cumin essential oil against Aspergillus flavus[J]. Natural Product Research and Development, 2018, 30(9): 1601-1607. doi: 10.16333/j.1001-6880.2018.9.022
    [54]
    WANG L, HE K Y, WANG X Q, et al. Recent progress in visual methods for aflatoxin detection[J]. Critical Reviews in Food Science and Nutrition,2021,62(28):1−18.
    [55]
    赵颖, 李倩, 朱晓嫚, 等. 邻香兰素对黄曲霉生长的抑制作用研究[J]. 河南工业大学学报(自然科学版),2020,43(2):79−85. [ZHAO Y, LI Q, ZHU X M, et al. Study on the inhibitory effect of o-vanillin on the growth of Aspergillus flavus[J]. Journal of Henan University of Technology (Natural Science Edition),2020,43(2):79−85.

    ZHAO Y, LI Q, ZHU X M, et al. Study on the inhibitory effect of o-vanillin on the growth of Aspergillus flavus[J]. Journal of Henan University of Technology (Natural Science Edition), 2020, 43(2): 79-85.
    [56]
    AKINYELE B J, AKINKUNMI C O. Fungi associated with the spoilage of berry and their reaction to electromagnetic field[J]. Journal of Yeast and Fungal Research,2012,3(4):49−57.
    [57]
    AHMAD A M, YAHYA A G I, JABIR A W S. Effect of magnetic field energy on growth of Aspergillus flavus and aflatoxins production[J]. Al-Nahrain Journal of Science,2013,16(2):180−187.
    [58]
    KADHUM S I. Effect of magnetic field of both north and south pole on the growth and viability of the local isolate Aspergillus flavus sh1 and its capability for the production of aflatoxin[J]. Journal of Biotechnology Research Center,2013,7(1):14−20. doi: 10.24126/jobrc.2013.7.1.235
    [59]
    RAJAB Z N, SALMAN H E. Using acetonitrile for extraction of aflatoxin from Aspergillus flavus under the effect of static magnetic field[J]. Annals of the Romanian Society for Cell Biology,2021,25(4):4795−4806.
    [60]
    EISA A, ALI F M, HABBA G M, et al. Pulsed electric field technology for checking aflatoxin production in cultures and corn grains[J]. Egypt J Phytopathol,2003,31:75−86.
    [61]
    DEVI I S, PARIMALA K, BHARATHI V, et al. Effect of sinusoidal electromagnetic field pretreatment on maize seed borne fungi[J]. Indian Journal of Plant Protection,2016,44(2):229−232.
    [62]
    NUROĞLU E, ÖZ E, BAKIRDERE S, et al. Evaluation of magnetic field assisted sun drying of food samples on drying time and mycotoxin production[J]. Innovative Food Science and Emerging Technologies,2019,52:237−243. doi: 10.1016/j.ifset.2019.01.004
  • Cited by

    Periodical cited type(7)

    1. 李欣宜,李红波,莫海珍,刘振彬,胡梁斌,徐丹,张珈祎,姚丽姗. 预处理工艺对香菇品质的影响规律研究. 中国调味品. 2025(02): 133-140 .
    2. 刘俊红,徐佳丽,马亚娜,叶延欣. 香菇中呈味核苷酸提取工艺优化. 河南城建学院学报. 2024(02): 116-121 .
    3. 陈静,唐浩国,王嘉康,司启贺,申茹晓. 酶解法制备菌菇酱工艺优化. 食品与机械. 2024(04): 203-209 .
    4. 汪姣玲,樊振南,唐雄,徐欢欢,岳元媛. 香菇鲜味低钠盐的配方研究及其智能感官分析. 食品安全质量检测学报. 2022(04): 1264-1270 .
    5. 张婷婷,赖丽婷,王茵,魏雪琴. 低值水产品制备天然复合海鲜调味料的工艺研究. 包装与食品机械. 2022(02): 13-19 .
    6. 李旋,李强忠. 香菇深加工的工业化研究进展. 现代食品. 2022(21): 7-9 .
    7. 王福清,易静薇. 复合调味料的生产及研究进展. 中国调味品. 2021(10): 193-197 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (167) PDF downloads (14) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return