Citation: | NING Peng, YANG Dong, LIAO Xiaojun, et al. Disinfection Effect of High-pressure Carbon Dioxide on Human Coronavirus (hCoV-229E)[J]. Science and Technology of Food Industry, 2023, 44(2): 293−298. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022010273. |
[1] |
LI D D, LI Q H. SARS-CoV-2: Vaccines in the pandemic era[J]. Military Medical Research,2021,8(2):15. doi: 10.1186/s40779-020-00296-y
|
[2] |
ARNAUD F, BRIGITTE A, BRUNO L, et al. SARS-CoV-2 variants and ending the COVID-19 pandemic[J]. The Lancet,2021,397(10278):952−954. doi: 10.1016/S0140-6736(21)00370-6
|
[3] |
LUO C H, MORRIS C P, SACHITHANANDHAM J, et al. Infection with the SARS-CoV-2 delta variant is associated with higher infectious virus loads compared to the alpha variant in both unvaccinated and vaccinated individuals[J]. Clinical Infectious Diseases,2021:ciab986.
|
[4] |
KARIM S S A, KARIM Q A. Omicron SARS-CoV-2 variant: A new chapter in the COVID-19 pandemic[J]. The Lancet,2021,398(10317):2126−2128. doi: 10.1016/S0140-6736(21)02758-6
|
[5] |
SHUAI H P, CHAN J F W, HU B J, et al. Attenuated replication and pathogenicity of SARS-CoV-2 B. 1.1. 529 Omicron[J]. Nature,2022,603(7902):693−699. doi: 10.1038/s41586-022-04442-5
|
[6] |
SU S, WONG G, SHI W F, et al. Epidemiology, genetic recombination, and pathogenesis of coronaviruses[J]. Trends in Microbiology,2016,24(6):490−502. doi: 10.1016/j.tim.2016.03.003
|
[7] |
WU Y, WANG F R, SHEN C G, et al. A noncompeting pair of human neutralizing antibodies block COVID-19 virus binding to its receptor ACE2[J]. Science,2020,368(6496):1274−1278. doi: 10.1126/science.abc2241
|
[8] |
ZHOU H, JI J K, CHEN X, et al. Identification of novel bat coronaviruses sheds light on the evolutionary origins of SARS-CoV-2 and related viruses[J]. Cell,2021,184(17):4380−4391. doi: 10.1016/j.cell.2021.06.008
|
[9] |
LI F. Structure, function, and evolution of coronavirus spike proteins[J]. Annual Review of Virology,2016,3(1):237−261. doi: 10.1146/annurev-virology-110615-042301
|
[10] |
KESHEH M M, HOSSEINI P, SOLTANI S, et al. An overview on the seven pathogenic human coronaviruses[J]. Reviews in Medical Virology,2022,32(2):e2282.
|
[11] |
ZHANG N, GONG Y H, MENG F P, et al. Comparative study on virus shedding patterns in nasopharyngeal and fecal specimens of COVID-19 patients[J]. Science China-Life Sciences,2021,64(3):486−488. doi: 10.1007/s11427-020-1783-9
|
[12] |
SUN S H, CHEN Q, GU H J, et al. A mouse model of SARS-CoV-2 infection and pathogenesis[J]. Cell Host & Microbe,2020,28(1):124−133.
|
[13] |
LI J, LI H Y, XU J W, et al. The gastrointestinal tract is an alternative route for SARS-CoV-2 infection in a nonhuman primate model[J]. Gastroenterology,2021,160(5):1647−1661. doi: 10.1053/j.gastro.2020.12.001
|
[14] |
FENG X L, LI B, LIN H F, et al. Stability of SARS-CoV-2 on the surfaces of three meats in the setting that simulates the cold chain transportation[J]. Virologica Sinica,2021,36(5):1069−1072. doi: 10.1007/s12250-021-00367-x
|
[15] |
张玮珊, 胡新玲, 律娜, 等. 新型冠状病毒对冷链运输食品质量安全的影响[J]. 食品安全质量检测学报,2021,12(17):6735−6742. [ZHANG W S, HU X L, LÜ N, et al. Influence of SARS-CoV-2 on the quality and safety of cold chain transportation food[J]. Journal of Food Safety & Quality,2021,12(17):6735−6742.
|
[16] |
王艺菲, 谢婧荷, 厉曙光, 等. 新型冠状病毒肺炎疫情下进口冷链食品的风险防控[J]. 上海预防医学,2021,33(5):397−403. [WANG Y F, XIE J H, LI S G, et al. Risk management of imported cold-chain foods during the COVID-19 pandemic[J]. Shanghai Journal of Preventive Medicine,2021,33(5):397−403.
|
[17] |
李婉, 黄毅, 凌伟, 等. 海鲜水产品可能是新型冠状病毒滋生的重要“培养基”[J]. 医学争鸣,2021,12(3):55−59. [LI W, HUANG Y, LING W, et al. Seafood and aquatic products might be an important culture medium for SARS-CoV-2[J]. Negative,2021,12(3):55−59.
|
[18] |
MATHAVARAJAH S, STODDART A K, GAGNON G A, et al. Pandemic danger to the deep: The risk of marine mammals contracting SARS-CoV-2 from wastewater[J]. Science of the Total Environment,2021,760:143346. doi: 10.1016/j.scitotenv.2020.143346
|
[19] |
FUMAGALLI M J, CAPATO C F, CASTRO-JORGE L A, et al. Stability of SARS-CoV-2 and other airborne viruses under different stress conditions[J]. Archives of Virology,2022,167(1):183−187. doi: 10.1007/s00705-021-05293-7
|
[20] |
RABENAU H F, CINATL J, MORGENSGERN B, et al. Stability and inactivation of SARS coronavirus[J]. Medical Microbiology and Immunology,2005,194(1−2):1−6. doi: 10.1007/s00430-004-0219-0
|
[21] |
GARCIA-GONZALEZ L, GEERAERD A H, SPILIMBERGO S, et al. High pressure carbon dioxide inactivation of microorganisms in foods: The past, the present and the future[J]. International Journal of Food Microbiology,2007,117(1):1−28. doi: 10.1016/j.ijfoodmicro.2007.02.018
|
[22] |
YU T H, NIU L Y, HITOSHI I. High-pressure carbon dioxide used for pasteurization in food industry[J]. Food Engineering Reviews,2020,12(3):364−380. doi: 10.1007/s12393-020-09240-1
|
[23] |
李靖, 王嘉祥, 陈欢, 等. 超高压与热杀菌对刺梨汁贮藏期品质影响的比较[J]. 食品科学,2022,43(15):101−108. [LI J, WANG J X, CHEN H, et al. Comparison of the effects of ultra-high pressure and thermal processing on quality changes of Rosa roxburghii juice during storage[J]. Food Science,2022,43(15):101−108. doi: 10.7506/spkx1002-6630-20210807-093
|
[24] |
ZHOU L Y, BI X F, XU Z H, et al. Effects of high-pressure CO2 processing on flavor, texture, and color of foods[J]. Critical Reviews in Food Science and Nutrition,2015,55(6):750−768. doi: 10.1080/10408398.2012.677871
|
[25] |
侯志强, 赵凤, 饶雷, 等. 高压二氧化碳技术的杀菌研究进展[J]. 中国农业科技导报,2015,17(5):40−48. [HOU Z Q, ZHAO F, RAO L, et al. Research progress on pasteurization and sterilization using high pressure carbon dioxide technology[J]. Journal of Agricultural Science and Technology,2015,17(5):40−48.
|
[26] |
RAO L, BI X F, ZHAO F, et al. Effect of high-pressure CO2 processing on bacterial spores[J]. Critical Reviews in Food Science and Nutrition,2016,56(11):1808−1825. doi: 10.1080/10408398.2013.787385
|
[27] |
BLONDIN-BROSSEAU M, HARLOWJ, DOCTOR T, et al. Examining the persistence of human coronavirus 229E on fresh produce[J]. Food Microbiol,2021,98:103780. doi: 10.1016/j.fm.2021.103780
|
[28] |
REED L J, MUENCH H. A simple method of estimating fifty per cent endpoints[J]. American Journal of Epidemiology,1938,27(3):493−497. doi: 10.1093/oxfordjournals.aje.a118408
|
[29] |
ERKMN O. Antimicrobial effect of pressurized carbon dioxide onStaphylococcus aureus in broth and milk[J]. LWT-Food Science and Technology,1997,30(8):826−829. doi: 10.1006/fstl.1997.0277
|
[30] |
RAO L, LIANG Z, WANG Y T, et al. Mechanism of inactivation of Bacillus subtilis spores by high pressure CO2 at high temperature[J]. Food Microbiology,2019,82:36−45. doi: 10.1016/j.fm.2019.01.014
|
[31] |
ZHAO L, QIN X, WANG Y T, et al. CO2-assisted high pressure processing on inactivation of Escherichia coli and Staphylococcus aureus[J]. Journal of CO2 Utilization,2017,22:53−62. doi: 10.1016/j.jcou.2017.09.005
|
[32] |
RAO L, XU Z Z, WANG Y T, et al. Inactivation of Bacillus subtilis spores by high pressure CO2 with high temperature[J]. International Journal of Food Microbiology,2015,205:73−80. doi: 10.1016/j.ijfoodmicro.2015.04.012
|
[33] |
FERRENTINO G, BRUNO M, FERRARI G, et al. Microbial inactivation and shelf life of apple juice treated with high pressure carbon dioxide[J]. Journal of Biological Engineering,2009,3:3. doi: 10.1186/1754-1611-3-3
|
[34] |
HATA C, KUMAGAI H, NAKAMURA K. Rate analysis of the sterilization of microbial cells in high pressure carbon dioxide[J]. Food Science and Technology International, Tokyo,1996,2(4):229−233. doi: 10.3136/fsti9596t9798.2.229
|
[35] |
WATANABE T, FURUKAWA S, HIRATA J, et al. Inactivation of Geobacillus stearothermophilus spores by high-pressure carbon dioxide treatment[J]. Applied and Environmental Microbiology,2003,69(12):7124−7129. doi: 10.1128/AEM.69.12.7124-7129.2003
|
[36] |
ERKMEN O. Inactivation of Salmonella typhimurium by high pressure carbon dioxide[J]. Food Microbiology,2000,17(2):225−232. doi: 10.1006/fmic.1999.0308
|
[37] |
RIBEIRO N, SOARES G, SANTOS-ROSALES V, et al. A new era for sterilization based on supercritical CO2 technology[J]. Journal of Biomedical Materials Research Part B:Applied Biomaterials,2020,108(2):399−428. doi: 10.1002/jbm.b.34398
|
[38] |
WERENR B G, HOTCHKISS J H. Continuous flow nonthermal CO2 processing: The lethal effects of subcritical and supercritical CO2 on total microbial populations and bacterial spores in raw milk[J]. Journal of Dairy Science,2006,89(3):872−881. doi: 10.3168/jds.S0022-0302(06)72151-8
|
[39] |
DARNELL M E R, SUBBARAO K, FEINSTONE S M, et al. Inactivation of the coronavirus that induces severe acute respiratory syndrome, SARS-CoV[J]. Journal of Virological Methods,2004,121(1):85−91. doi: 10.1016/j.jviromet.2004.06.006
|
[40] |
廖红梅, 廖小军, 胡小松. 高压二氧化碳杀菌机理研究进展[J]. 食品工业科技,2012,33(19):387−390,395. [LIAO H M, LIAO X J, HU X S. Research progress in inactivation mechanisms of high pressure carbon dioxide[J]. Science and Technology of Food Industry,2012,33(19):387−390,395.
|
[41] |
SPILIMBERGO S, BERTUCCO A, BASSO G, et al. Determination of extracellular and intracellular pH of Bacillus subtilis suspension under CO2 treatment[J]. Biotechnol Bioeng,2005,92(4):447−451. doi: 10.1002/bit.20606
|