NING Peng, YANG Dong, LIAO Xiaojun, et al. Disinfection Effect of High-pressure Carbon Dioxide on Human Coronavirus (hCoV-229E)[J]. Science and Technology of Food Industry, 2023, 44(2): 293−298. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022010273.
Citation: NING Peng, YANG Dong, LIAO Xiaojun, et al. Disinfection Effect of High-pressure Carbon Dioxide on Human Coronavirus (hCoV-229E)[J]. Science and Technology of Food Industry, 2023, 44(2): 293−298. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022010273.

Disinfection Effect of High-pressure Carbon Dioxide on Human Coronavirus (hCoV-229E)

More Information
  • Received Date: February 09, 2022
  • Available Online: November 16, 2022
  • Objective: Exploring the disinfection effect of high-pressure carbon dioxide (HPCD) on human coronavirus 229E (hCoV-229E). Methods: The human coronavirus 229E (hCoV-229E) was treated by HPCD at different temperatures (10, 25, and 37 ℃) and pressures (6.3 and 10 MPa) for different time (15 and 30 min). Result: Compared with the control groups under the corresponding temperatures, the virus titer in 50 mL tube treated with HPCD at 10 ℃ and 6.3 MPa for 30 min was significantly decreased (P<0.05). The virus titer was also significantly reduced after treatment with HPCD at 37 ℃ and 10 MPa for 15 min (P<0.01). Moreover, the virus titers inoculated on the surfaces of salmon meat, shrimp shell, and polyethylene packing materials were all significantly decreased after HPCD treatment at 37 ℃ and 10 MPa for 15 min as compared with the corresponding control groups (P<0.05). Conclusion: HPCD treatment at 37 ℃ and 10 MPa for 15 minutes could effectively disinfect hCoV-229E on the surface of food (salmon meat and shrimp shell) and polyethylene packaging materials.
  • [1]
    LI D D, LI Q H. SARS-CoV-2: Vaccines in the pandemic era[J]. Military Medical Research,2021,8(2):15. doi: 10.1186/s40779-020-00296-y
    [2]
    ARNAUD F, BRIGITTE A, BRUNO L, et al. SARS-CoV-2 variants and ending the COVID-19 pandemic[J]. The Lancet,2021,397(10278):952−954. doi: 10.1016/S0140-6736(21)00370-6
    [3]
    LUO C H, MORRIS C P, SACHITHANANDHAM J, et al. Infection with the SARS-CoV-2 delta variant is associated with higher infectious virus loads compared to the alpha variant in both unvaccinated and vaccinated individuals[J]. Clinical Infectious Diseases,2021:ciab986.
    [4]
    KARIM S S A, KARIM Q A. Omicron SARS-CoV-2 variant: A new chapter in the COVID-19 pandemic[J]. The Lancet,2021,398(10317):2126−2128. doi: 10.1016/S0140-6736(21)02758-6
    [5]
    SHUAI H P, CHAN J F W, HU B J, et al. Attenuated replication and pathogenicity of SARS-CoV-2 B. 1.1. 529 Omicron[J]. Nature,2022,603(7902):693−699. doi: 10.1038/s41586-022-04442-5
    [6]
    SU S, WONG G, SHI W F, et al. Epidemiology, genetic recombination, and pathogenesis of coronaviruses[J]. Trends in Microbiology,2016,24(6):490−502. doi: 10.1016/j.tim.2016.03.003
    [7]
    WU Y, WANG F R, SHEN C G, et al. A noncompeting pair of human neutralizing antibodies block COVID-19 virus binding to its receptor ACE2[J]. Science,2020,368(6496):1274−1278. doi: 10.1126/science.abc2241
    [8]
    ZHOU H, JI J K, CHEN X, et al. Identification of novel bat coronaviruses sheds light on the evolutionary origins of SARS-CoV-2 and related viruses[J]. Cell,2021,184(17):4380−4391. doi: 10.1016/j.cell.2021.06.008
    [9]
    LI F. Structure, function, and evolution of coronavirus spike proteins[J]. Annual Review of Virology,2016,3(1):237−261. doi: 10.1146/annurev-virology-110615-042301
    [10]
    KESHEH M M, HOSSEINI P, SOLTANI S, et al. An overview on the seven pathogenic human coronaviruses[J]. Reviews in Medical Virology,2022,32(2):e2282.
    [11]
    ZHANG N, GONG Y H, MENG F P, et al. Comparative study on virus shedding patterns in nasopharyngeal and fecal specimens of COVID-19 patients[J]. Science China-Life Sciences,2021,64(3):486−488. doi: 10.1007/s11427-020-1783-9
    [12]
    SUN S H, CHEN Q, GU H J, et al. A mouse model of SARS-CoV-2 infection and pathogenesis[J]. Cell Host & Microbe,2020,28(1):124−133.
    [13]
    LI J, LI H Y, XU J W, et al. The gastrointestinal tract is an alternative route for SARS-CoV-2 infection in a nonhuman primate model[J]. Gastroenterology,2021,160(5):1647−1661. doi: 10.1053/j.gastro.2020.12.001
    [14]
    FENG X L, LI B, LIN H F, et al. Stability of SARS-CoV-2 on the surfaces of three meats in the setting that simulates the cold chain transportation[J]. Virologica Sinica,2021,36(5):1069−1072. doi: 10.1007/s12250-021-00367-x
    [15]
    张玮珊, 胡新玲, 律娜, 等. 新型冠状病毒对冷链运输食品质量安全的影响[J]. 食品安全质量检测学报,2021,12(17):6735−6742. [ZHANG W S, HU X L, LÜ N, et al. Influence of SARS-CoV-2 on the quality and safety of cold chain transportation food[J]. Journal of Food Safety & Quality,2021,12(17):6735−6742.
    [16]
    王艺菲, 谢婧荷, 厉曙光, 等. 新型冠状病毒肺炎疫情下进口冷链食品的风险防控[J]. 上海预防医学,2021,33(5):397−403. [WANG Y F, XIE J H, LI S G, et al. Risk management of imported cold-chain foods during the COVID-19 pandemic[J]. Shanghai Journal of Preventive Medicine,2021,33(5):397−403.
    [17]
    李婉, 黄毅, 凌伟, 等. 海鲜水产品可能是新型冠状病毒滋生的重要“培养基”[J]. 医学争鸣,2021,12(3):55−59. [LI W, HUANG Y, LING W, et al. Seafood and aquatic products might be an important culture medium for SARS-CoV-2[J]. Negative,2021,12(3):55−59.
    [18]
    MATHAVARAJAH S, STODDART A K, GAGNON G A, et al. Pandemic danger to the deep: The risk of marine mammals contracting SARS-CoV-2 from wastewater[J]. Science of the Total Environment,2021,760:143346. doi: 10.1016/j.scitotenv.2020.143346
    [19]
    FUMAGALLI M J, CAPATO C F, CASTRO-JORGE L A, et al. Stability of SARS-CoV-2 and other airborne viruses under different stress conditions[J]. Archives of Virology,2022,167(1):183−187. doi: 10.1007/s00705-021-05293-7
    [20]
    RABENAU H F, CINATL J, MORGENSGERN B, et al. Stability and inactivation of SARS coronavirus[J]. Medical Microbiology and Immunology,2005,194(1−2):1−6. doi: 10.1007/s00430-004-0219-0
    [21]
    GARCIA-GONZALEZ L, GEERAERD A H, SPILIMBERGO S, et al. High pressure carbon dioxide inactivation of microorganisms in foods: The past, the present and the future[J]. International Journal of Food Microbiology,2007,117(1):1−28. doi: 10.1016/j.ijfoodmicro.2007.02.018
    [22]
    YU T H, NIU L Y, HITOSHI I. High-pressure carbon dioxide used for pasteurization in food industry[J]. Food Engineering Reviews,2020,12(3):364−380. doi: 10.1007/s12393-020-09240-1
    [23]
    李靖, 王嘉祥, 陈欢, 等. 超高压与热杀菌对刺梨汁贮藏期品质影响的比较[J]. 食品科学,2022,43(15):101−108. [LI J, WANG J X, CHEN H, et al. Comparison of the effects of ultra-high pressure and thermal processing on quality changes of Rosa roxburghii juice during storage[J]. Food Science,2022,43(15):101−108. doi: 10.7506/spkx1002-6630-20210807-093
    [24]
    ZHOU L Y, BI X F, XU Z H, et al. Effects of high-pressure CO2 processing on flavor, texture, and color of foods[J]. Critical Reviews in Food Science and Nutrition,2015,55(6):750−768. doi: 10.1080/10408398.2012.677871
    [25]
    侯志强, 赵凤, 饶雷, 等. 高压二氧化碳技术的杀菌研究进展[J]. 中国农业科技导报,2015,17(5):40−48. [HOU Z Q, ZHAO F, RAO L, et al. Research progress on pasteurization and sterilization using high pressure carbon dioxide technology[J]. Journal of Agricultural Science and Technology,2015,17(5):40−48.
    [26]
    RAO L, BI X F, ZHAO F, et al. Effect of high-pressure CO2 processing on bacterial spores[J]. Critical Reviews in Food Science and Nutrition,2016,56(11):1808−1825. doi: 10.1080/10408398.2013.787385
    [27]
    BLONDIN-BROSSEAU M, HARLOWJ, DOCTOR T, et al. Examining the persistence of human coronavirus 229E on fresh produce[J]. Food Microbiol,2021,98:103780. doi: 10.1016/j.fm.2021.103780
    [28]
    REED L J, MUENCH H. A simple method of estimating fifty per cent endpoints[J]. American Journal of Epidemiology,1938,27(3):493−497. doi: 10.1093/oxfordjournals.aje.a118408
    [29]
    ERKMN O. Antimicrobial effect of pressurized carbon dioxide onStaphylococcus aureus in broth and milk[J]. LWT-Food Science and Technology,1997,30(8):826−829. doi: 10.1006/fstl.1997.0277
    [30]
    RAO L, LIANG Z, WANG Y T, et al. Mechanism of inactivation of Bacillus subtilis spores by high pressure CO2 at high temperature[J]. Food Microbiology,2019,82:36−45. doi: 10.1016/j.fm.2019.01.014
    [31]
    ZHAO L, QIN X, WANG Y T, et al. CO2-assisted high pressure processing on inactivation of Escherichia coli and Staphylococcus aureus[J]. Journal of CO2 Utilization,2017,22:53−62. doi: 10.1016/j.jcou.2017.09.005
    [32]
    RAO L, XU Z Z, WANG Y T, et al. Inactivation of Bacillus subtilis spores by high pressure CO2 with high temperature[J]. International Journal of Food Microbiology,2015,205:73−80. doi: 10.1016/j.ijfoodmicro.2015.04.012
    [33]
    FERRENTINO G, BRUNO M, FERRARI G, et al. Microbial inactivation and shelf life of apple juice treated with high pressure carbon dioxide[J]. Journal of Biological Engineering,2009,3:3. doi: 10.1186/1754-1611-3-3
    [34]
    HATA C, KUMAGAI H, NAKAMURA K. Rate analysis of the sterilization of microbial cells in high pressure carbon dioxide[J]. Food Science and Technology International, Tokyo,1996,2(4):229−233. doi: 10.3136/fsti9596t9798.2.229
    [35]
    WATANABE T, FURUKAWA S, HIRATA J, et al. Inactivation of Geobacillus stearothermophilus spores by high-pressure carbon dioxide treatment[J]. Applied and Environmental Microbiology,2003,69(12):7124−7129. doi: 10.1128/AEM.69.12.7124-7129.2003
    [36]
    ERKMEN O. Inactivation of Salmonella typhimurium by high pressure carbon dioxide[J]. Food Microbiology,2000,17(2):225−232. doi: 10.1006/fmic.1999.0308
    [37]
    RIBEIRO N, SOARES G, SANTOS-ROSALES V, et al. A new era for sterilization based on supercritical CO2 technology[J]. Journal of Biomedical Materials Research Part B:Applied Biomaterials,2020,108(2):399−428. doi: 10.1002/jbm.b.34398
    [38]
    WERENR B G, HOTCHKISS J H. Continuous flow nonthermal CO2 processing: The lethal effects of subcritical and supercritical CO2 on total microbial populations and bacterial spores in raw milk[J]. Journal of Dairy Science,2006,89(3):872−881. doi: 10.3168/jds.S0022-0302(06)72151-8
    [39]
    DARNELL M E R, SUBBARAO K, FEINSTONE S M, et al. Inactivation of the coronavirus that induces severe acute respiratory syndrome, SARS-CoV[J]. Journal of Virological Methods,2004,121(1):85−91. doi: 10.1016/j.jviromet.2004.06.006
    [40]
    廖红梅, 廖小军, 胡小松. 高压二氧化碳杀菌机理研究进展[J]. 食品工业科技,2012,33(19):387−390,395. [LIAO H M, LIAO X J, HU X S. Research progress in inactivation mechanisms of high pressure carbon dioxide[J]. Science and Technology of Food Industry,2012,33(19):387−390,395.
    [41]
    SPILIMBERGO S, BERTUCCO A, BASSO G, et al. Determination of extracellular and intracellular pH of Bacillus subtilis suspension under CO2 treatment[J]. Biotechnol Bioeng,2005,92(4):447−451. doi: 10.1002/bit.20606
  • Related Articles

    [1]LIAO Suqi, WANG Lijun, XIA Xianghua, FU Jin'e, WEI Shugen, LONG Hairong. Determination and Evaluation of Nutritional Components in Stem and Leaves of Kadsura cocinea[J]. Science and Technology of Food Industry, 2021, 42(5): 289-294. DOI: 10.13386/j.issn1002-0306.2020040276
    [2]TIAN Jing, LI Qiao-ling. Rapid Determination of Citric Acid and L-malic Acid Content for Pear Juice by Near Infrared Spectroscopy[J]. Science and Technology of Food Industry, 2018, 39(20): 227-232. DOI: 10.13386/j.issn1002-0306.2018.20.038
    [3]FU Qun, ZHAO Hong-hua, LIU Feng, REN Hong-bo, WEI Jun-qing, CHEN Guo-feng. Determination of five pesticides residues in wild vegetables by ultra performance liquid chromatography-tandem mass spectrometry[J]. Science and Technology of Food Industry, 2017, (15): 238-243. DOI: 10.13386/j.issn1002-0306.2017.15.044
    [4]XU Rui, TAN Hong, YANG Hong-bo, SUN Hai-da, HE Jin-lin. Determination of seven perfluorinated compounds in fast food papers by solid phase extraction couple with solid phase extraction and liquid chromatography-mass spectrometry[J]. Science and Technology of Food Industry, 2015, (06): 49-52. DOI: 10.13386/j.issn1002-0306.2015.06.001
    [5]HE Ming- feng, ZHOU Jian-wei, LIU Dong-hong. Review on migration and determination of bisphenol A and its epoxy derivatives in food can coatings[J]. Science and Technology of Food Industry, 2015, (01): 381-385. DOI: 10.13386/j.issn1002-0306.2015.01.072
    [6]WU Ying, ZHANG Hui, CUI Fang, JIANG Jie. Determination of Urotropine in dried beancurd sticks by ultra performance liquid chromatography-tandem mass spectrometry[J]. Science and Technology of Food Industry, 2014, (17): 298-300. DOI: 10.13386/j.issn1002-0306.2014.17.057
    [7]ZHOU Hong-xia, HUA Chun, TANG Hui-min. Determination of 20 pthalates in feed by Gas Chromatography-Mass Spectrometry[J]. Science and Technology of Food Industry, 2014, (10): 74-78. DOI: 10.13386/j.issn1002-0306.2014.10.007
    [8]WU Jing, LEI Hong-tao, SHEN Yu-dong, WANG Hong, YANG Jin-yi, SUN Yuan-ming, XU Zhen-lin. Trends in the determination of trace acrylamide in food products[J]. Science and Technology of Food Industry, 2013, (23): 380-385. DOI: 10.13386/j.issn1002-0306.2013.23.073
    [9]LI Chun-li, ZHU Xue-liang. Simultaneous determination of 16 kinds of phathalate plasticizers in wine by gas chromatography /triple quadrupole mass spectrometry[J]. Science and Technology of Food Industry, 2013, (21): 310-312. DOI: 10.13386/j.issn1002-0306.2013.21.083
    [10]YUAN Shi-lin, SHANG Yu, QIU Yang. A new method on determination of the total sugar content in edible fungi[J]. Science and Technology of Food Industry, 2013, (18): 78-79. DOI: 10.13386/j.issn1002-0306.2013.18.044

Catalog

    Article Metrics

    Article views (155) PDF downloads (10) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return