Citation: | JIANG Shasha, HUO Yonghong, LI Dehai, et al. Analysis of Heavy Metal Pollution in Rice and Its Status of Risk Assessment[J]. Science and Technology of Food Industry, 2023, 44(2): 417−426. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022010215. |
[1] |
HUANG J, GUO S, ZENG G M, et al. A new exploration of health risk assessment quantification from sources of soil heavy metals under different land use[J]. Environmental Pollution,2018,243:49−58. doi: 10.1016/j.envpol.2018.08.038
|
[2] |
杨文蕾, 沈亚婷. 水稻对砷吸收的机理及控制砷吸收的农艺途径研究进展[J]. 岩矿试,2020,39(4):475−492. [YANG W L, SHEN Y T. Mechanism of arsenic uptake by rice and agronomic approaches to control arsenic uptake[J]. Rock Test,2020,39(4):475−492.
|
[3] |
孔宪琴, 张小惠, 李春生, 等. 水稻等重要作物种子的保存与管理体系探究[J]. 中国稻米,2018,24(4):91−95. [KONG X Q, ZHANG X H, LI C S, et al. Study on seed conservation and management system of rice and other important crops[J]. China Rice,2018,24(4):91−95. doi: 10.3969/j.issn.1006-8082.2018.04.022
|
[4] |
NAG R, OROURKE S M, CUMMINS E. Risk factors and assessment strategies for the evaluation of human or environmental risk from metal(loid)s-a focus on Ireland[J]. Sci Total Environ,2021,24(8):149839.
|
[5] |
YANG D Q, LIU S X, XIA S P, et al. Effects of cadmium stress on the growth of rice seedlings[J]. Agricultural Science & Technology,2019,20(3):11−16.
|
[6] |
魏益民, 魏帅, 郭波莉, 等. 含镉稻米的分布及治理技术概述[J]. 食品科学技术学报,2013,31(2):1−6. [WEI Y M, WEI S, GUO B L, et al. Distribution and control techniques of rice containing cadmium[J]. Journal of Food Science and Technology,2013,31(2):1−6. doi: 10.3969/j.issn.2095-6002.2013.02.001
|
[7] |
中华人民共和国国家卫生和计划生育委员会. 国家食品药品监督管理总局. GB 2761-2017 食品安全国家标准 食品中污染物限量[S]. 北京: 中国标准出版社, 2017.
National Health and Family Planning Commission. China Food and Drug Administration. GB 2761-2017 National standard for food safety. Limits for contaminants in food[S]. Beijing: China Standard Press, 2017.
|
[8] |
JIANG K, DENG X, ZHOU H N, et al. Health risk assessment of Cd pollution in irrigatedpaddy field system: A field investigation in Hunan Province, China[J]. Human and Ecological Risk Assessment: An International Journal,2021,27(2):352−367. doi: 10.1080/10807039.2020.1715203
|
[9] |
DENG MEIHUA, MALIK A, ZHANG Q, et al. Improving Cd risk managements of rice cropping system by integrating source-soi-rice-human chain for a typical intensive industrial and agricultural region[J]. Journal of Cleaner Production,2021,313:127883. doi: 10.1016/j.jclepro.2021.127883
|
[10] |
QIONG Y, ZHONG F Y. Ecological risk assessment of Cd and other heavy metals in soil-rice system in the karst areas with high geochemical background of Guangxi, China[J]. Science China (Earth Sciences),2021,64(7):1126−1139. doi: 10.1007/s11430-020-9763-0
|
[11] |
王玥. pH和淹水条件对水稻与东南景天间作体系中水稻吸收镉的影响[D]. 广州: 华南农业大学, 2018.
WANG Y. Effects of pH and flooding conditions on cadmium uptake by rice in intercropping system with sedum al frediyhance[D]. Guangzhou: South China Agricultural University, 2018.
|
[12] |
SUN L J, WANG J, SONG K, et al. Transcriptome analysis of rice (Oryza sativa L.) shoots responsive to cadmium stress[J]. Scientific Reports,2019,9(1−2):10177.
|
[13] |
LUO Y, HUANG D, WU L, et al. The impact of metal silos on rice storage and storage losses in China[J]. Food Sec,2021,14(1):81−92.
|
[14] |
KONG F, LU S. Soil inorganic amendments produce safe rice by reducing the transfer of Cd and increasing key amino acids in brown rice[J]. Journal of Environmental Sciences,2022(1):1001−0742.
|
[15] |
郑涵. 稻田土壤中Cd形态与有效性主要影响因子与调控关键技术[D]. 北京: 中国农业科学院, 2020.
ZHENG H. Main influencing factors and key regulation techniques of CD form and availability in paddy soil[D]. Beijing: Chinese Academy of Agricultural Sciences, 2020.
|
[16] |
陈义芳, 周卫东, 刘爱平, 等. 水稻籽粒不同部位P与Al、Cd、Pb含量的关系[J]. 江苏农业学报,2007(2):93−97. [CHEN Y F, ZHOU W D, LIU A P, et al. Relationship between P and Al, Cd, PB contents in different parts of rice grain[J]. Jiangsu Agricultural Journal,2007(2):93−97. doi: 10.3969/j.issn.1000-4440.2007.02.003
|
[17] |
HAO X H, ZENG M, WANG J, et al. A node-expressed transporter OsCCX2 is involved in grain cadmium accumulation of rice[J]. Frontiers in Plant Science,2018,9:476. doi: 10.3389/fpls.2018.00476
|
[18] |
魏帅. 稻米中镉元素分布部位及赋存形态研究[D]. 北京: 中国农业科学院, 2016.
WEI S. Distribution and speciation of CD in rice[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016.
|
[19] |
WILLIAMS P N, ZHANG H, DAVISON W, et al. Organic matter solid phase interactions are critical for predicting arsenic release and plant uptake in Bangladesh paddy soils[J]. Environ Technol,2011,45(14):6080−6087. doi: 10.1021/es2003765
|
[20] |
张昌. 黑龙江主产区土壤-水稻系统重金属转移建模及风险评估[D]. 大庆: 黑龙江八一农垦大学, 2020.
ZHANG C. Transfer modeling and risk assessment of heavy metals in soil-rice system in main production areas of Heilongjiang[D]. Daqing: Heilongjiang Bayi Agricultural University, 2020.
|
[21] |
YONG F, SUN X, YANG W, et al. Concentrations and health risks of lead, cadmium, arsenic, and mercury in rice and edible mushrooms in China[J]. Food Chemistry,2014,147(15):147−151.
|
[22] |
韩晶. 辽宁地区大米中重金属检测探析[J]. 食品安全导刊,2021(36):109−111, 115. [HAN J. Detection of heavy metals in rice in Liaoning province[J]. Food Safety Guide,2021(36):109−111, 115. doi: 10.3969/j.issn.1674-0270.2021.36.spaqdk202136043
|
[23] |
李颖, 刘国, 谢强, 等. 邯郸市某冶炼厂周边小麦体内重金属含量研究[J]. 四川环境,2017,36(4):43−46. [LI Y, LIU G, XIE Q, et al. Study on heavy metal contents in wheat around a smelter in Handan[J]. Sichuan Environment,2017,36(4):43−46. doi: 10.14034/j.cnki.schj.2017.04.009
|
[24] |
覃焱, 韦燕燕, 顾明华. 中国市售大米重金属含量及健康风险评估[J]. 食品工业,2020,41(11):332−335. [TAN Y, WEI Y Y, GU M H. Heavy metal content and health risk assessment of rice sold in China[J]. Food Industry,2020,41(11):332−335.
|
[25] |
何露露, 贾非然, 李欣童, 等. 南京市市售大米、蔬菜中6种微量元素含量调查及健康风险评估[J]. 职业与健康,2020,36(24):3364−3367. [HE L L, JIA F R, LI X T, et al. Investigation and health risk assessment of 6 micronutrient in rice and vegetables sold in Nanjing[J]. Occupation and Health,2020,36(24):3364−3367. doi: 10.13329/j.cnki.zyyjk.20201019.001
|
[26] |
刘文慧. 安徽某地农田土壤重金属生态风险评价[D]. 合肥: 合肥工业大学, 2020.
LIU W H. Ecological risk assessment of heavy metals in farmland soils in Anhui province[D]. Hefei: Hefei University of Technology, 2020.
|
[27] |
邹勇, 曾卓华, 方立魁, 等. 优质重庆高山贡米筛选及其理化成分与食味特性关系研究[J]. 中国粮油学报,2022,37(3):17−24. [ZOU Y, ZENG Z H, FANG L K, et al. Screening of high-quality Gongmi from Chongqing mountain and study on the relationship between its physicochemical components and eating characteristics[J]. Chinese Journal of Grain and Oil,2022,37(3):17−24. doi: 10.3969/j.issn.1003-0174.2022.03.004
|
[28] |
MIHUCZ V G, SILVERSMIT G, SZALOKI I, et al. Removal of some elements from washed and cooked rice studied by inductively coupled plasma mass spectrometry and synchrotron based confocal micro-X-ray fluorescence[J]. Food Chemistry,2010,121(1):290−297. doi: 10.1016/j.foodchem.2009.11.090
|
[29] |
FENG W, FAN D, LI K, et al. Removal of cadmium from rice grains by acid soaking and quality evaluation of decontaminated rice[J]. Food Chemistry,2021,371:131099.
|
[30] |
余雅芹. 食品中铅污染状况及其健康风险评价研究[D]. 武汉: 武汉轻工大学, 2014.
YU Y C. Study on the status and health risk assessment of lead contamination in food[D]. Wuhan: Wuhan Polytechnic University, 2014.
|
[31] |
SIRIANG K W, ITTICHAN P, PONHONG K, et al. Stripping voltametric determination of trace cadmium and lead in Thai organic unpolished rice after ultrasound-assisted digestion[J]. Journal of Food Composition and Analysis,2017,59:145−152. doi: 10.1016/j.jfca.2017.02.018
|
[32] |
黄晓玮. 原子吸收光谱法及重金属快速检测在大米镉含量检测中的应用对比[J]. 食品安全导刊,2017(30):108−109. [HUANG X W. Comparison of the application of atomic absorption spectroscopy and heavy metals in the determination of cadmium in rice[J]. Food Safety Guide,2017(30):108−109. doi: 10.3969/j.issn.1674-0270.2017.30.086
|
[33] |
李金桥. 原子荧光法测定镉元素的技术研究[J]. 生物化工,2020,6(1):91−93. [LI J J. A technical study on the determination of cadmium by atomic fluorescence spectrometry[J]. Biochemical Engineering,2020,6(1):91−93. doi: 10.3969/j.issn.2096-0387.2020.01.026
|
[34] |
KAARE J, AMUND M, SKAAR N H, et al. Determination of arsenic, cadmium, mercury, and lead by inductively coupled plasma/mass spectrometry in foods after pressure digestion: NMKL interlaboratory study[J]. Journal of AOAC International,2017(3):846−858.
|
[35] |
温丹华. 基于EDXRF技术对大米中Cd检测方法的研究[D]. 太原: 山西大学, 2019.
WEN D H. Research on the detection method of Cd in rice based on EDXRF technology[D]. Taiyuan: Shanxi University, 2019.
|
[36] |
刘艳梅, 钟辉, 黄建芳, 等. 直接竞争ELISA检测大米样品中的重金属镉[J]. 免疫学杂志,2015,31(6):528−532. [LIU Y M, ZHONG H, HUANG J F, et al. Direct competitive ELISA for the detection of cadmium in rice samples[J]. Journal of Immunology,2015,31(6):528−532. doi: 10.13431/j.cnki.immunol.j.20150112
|
[37] |
韩晓红. 食品中镉、铁离子可视化快速检测方法研究[D]. 天津: 天津科技大学, 2018.
HAN X H. Study on visualized rapid detection method of cadmium and iron in food[D]. Tianjin: Tianjin University of Science and Technology, 2018.
|
[38] |
彭斓兰, 陈季旺, 陈超凡, 等. GFAAS法测定大米中无机锡的前处理条件优化[J]. 武汉轻工大学报,2019,38(1):1−8. [PENG L, CHEN J W, CHEN C F, et al. Optimization of pretreatment conditions for determination of inorganic tin in rice by GFAAS[J]. Wuhan Polytechnic University,2019,38(1):1−8.
|
[39] |
MUDILA H, PRASHER P, KUMAR M, et al. An insight into cadmium poisoning and its removal from aqueous sources by graphene adsorbents[J]. International Journal of Environmental Health Research,2018:1−21.
|
[40] |
刘斌, 黎天勇, 蔡扬尧. “镉大米”的现状、危害及修复方法简述[J]. 现代食品,2018(21):86−89. [LIU B, LI T Y, CAI Y Y. Status harm and remediation of cadmium rice[J]. Modern Food,2018(21):86−89. doi: 10.16736/j.cnki.cn41-1434/ts.2018.21.029
|
[41] |
李艳飞, 谢昌平, 李德洁, 等. 柳州地区自产大米中镉、铅和砷污染状况及其健康风险评价[J]. 中国卫生检验杂志,2020,30(24):3026−3029. [LI Y F, XIE C P, LI D J, et al. Contamination status and health risk assessment of cadmium lead and arsenic in home-grown rice in Liuzhou[J]. Chinese Journal of Health Inspection,2020,30(24):3026−3029.
|
[42] |
FREIJE A M. Heavy metal, trace element and petroleum hydrocarbon pollution in the Arabian Gulf: Review[J]. Journal of the Association of Arab Universities for Basic & Applied Sciences,2015(17):90−100.
|
[43] |
XU X, ZHAO Y, ZHAO X, et al. Sources of heavy metal pollution in agricultural soils of a rapidly industrializing area in the Yangtze delta of China[J]. Ecotoxicology & Environmental Safety,2014(108):161−167.
|
[44] |
LI H, ZHANG H, YANG Y, et al. Effects and oxygen-regulated mechanisms of water management on cadmium (Cd) accumulation in rice (Oryza sativa)[J]. Science of the Total Environment,2022,846:157484. doi: 10.1016/j.scitotenv.2022.157484
|
[45] |
ZOU M M, ZHOU S L, ZHOU Y J, et al. Cadmium pollution of soil-rice ecosystems in rice cultivation dominated regions in China: A review[J]. Environmental Pollution,2021,280:116965. doi: 10.1016/j.envpol.2021.116965
|
[46] |
HE M, SHEN H, LI Z, et al. Ten-year regional monitoring of soil-rice grain contamination by heavy metals with implications for target remediation and food safety[J]. Environ Pollut,2019(244):431−439.
|
[47] |
ZHANG X F, YU H Y, LI F B, et al. Behaviors of heavy metal(loid)s in a contaminated alkaline paddy soil throughout the growth period of rice[J]. Total Environ,2020,7(16):136−204.
|
[48] |
LUO J S, HUANG J, ZENG D L, et al. A defensin-like protein drives cadmium efflux and allocation in rice[J]. Nature Communications,2018,9(1):645. doi: 10.1038/s41467-018-03088-0
|
[49] |
XU P, WU J, WANG H, et al. Long-term partial substitution of chemical fertilizer with green manure regulated organic matter mineralization in paddy soil dominantly by modulating organic carbon quality[J]. Plant Soil,2021,48(1-2):459−473.
|
[50] |
PHUC H D, KIDO T, OANH N T P, et al. Effects of aging on cadmium concentrations and renal dysfunction in inhabitants in cadmium-polluted regions in Japan[J]. Journal of Applied Toxicology,2017,37(9):1046−1052. doi: 10.1002/jat.3455
|
[51] |
SCHAEFER J K, ROCKS S S, ZHENG W, et al. Active transport, substrates pecificity and methylation of Hg(I) in anaerobic bacteria[J]. Proc Nat Acad,2011(108):8714−8719.
|
[52] |
RAHMAN M A, SAHA B K, CHOWDHURY M H, et al. Public perception and health implication of loom-dye effluent irrigation on growth of rice (Oryza sativa L.) and red amaranth (Amaranthus tricolor L.) seedlings[J]. Environmental Science and Pollution Research,2020,27(16):19410−19427. doi: 10.1007/s11356-020-08377-0
|
[53] |
周枭潇, 毕春娟, 汪萌, 等. 大气沉降对叶菜重金属的污染效应及其健康风险[J]. 华东师范大学学报:自然科学版,2018(2):141−150. [ZHOU X X, BI C J, WANG M, et al. Effects of atmospheric deposition on heavy metals in leafy vegetables and their health risks[J]. Proceedings of the East China Normal University: Natural Science,2018(2):141−150.
|
[54] |
ASHRAF U, KANU A S, MO Z W, et al. Lead toxicity in rice effects, mechanisms and mitigation strategies-a mini review[J]. Environ Pollut Res,2015,22(23):18318−18332. doi: 10.1007/s11356-015-5463-x
|
[55] |
赵多勇. 工业区典型重金属来源及迁移途径研究[D]. 北京: 中国农业科学院, 2012.
ZHAO D Y. Source identification apportionment and transfer route of typical heavy metal in an industrial area[D]. Beijing: Chinese Academy of Agricultural Sciences, 2012.
|
[56] |
WEI X, GAO B, WANG P, et al. Pollution characteristics and health risk assessment of heavy metals in street dusts from different functional areas in Beijing, China[J]. Ecotoxicology and Environmental Safety,2015(5):186−192.
|
[57] |
ROTHENBERG S E, FENG X, ZHOU W, et al. Environment and genotype controls on mercury accumulation in rice (Oryza sativa L.) cultivated along a contamination gradient in Guizhou China[J]. Total Environ,2012,426(1):272−280.
|
[58] |
许继平, 胡进, 叶宏, 等. 加工过程对稻麦重金属含量影响研究进展[J]. 现代食品科技,2019,35(11):300−309. [XU J P, HU J, YE H, et al. Effects of processing on heavy metal contents in rice and wheat[J]. Modern Food Technology,2019,35(11):300−309. doi: 10.13982/j.mfst.1673-9078.2019.11.041
|
[59] |
田阳. 稻米加工技术对产品镉含量的影响[D]. 北京: 中国农业科学院, 2013.
TIAN Y. Study on the effect of rice processing on the cadmium concentration of products[D]. Beijing: Chinese Academy of Agricultural Sciences, 2013.
|
[60] |
SHARAFI K, YUNESIAN M, MAHVI A H, et al. The reduction of toxic metals of various rice types by different preparation and cooking processes: Human health risk assessment in Tehran households, Iran[J]. Food Chemistry,2019,175:128−137.
|
[61] |
谢国雄, 楼旭平, 姜铭北, 等. 大气沉降对水稻各器官铅镉汞砷积累的影响[J]. 中国农学通报,2020,36(22):86−91. [XIE G X, LOU X P, JIANG M B, et al. Effects of atmospheric deposition on accumulation of PB Cd, HG and as in organs of rice[J]. Bulletin of Chinese Agronomy,2020,36(22):86−91.
|
[62] |
LAPARRA J M, VELEZ D, BARBERA R, et al. Bioavailability of inorganic arsenic in cooked rice: Practical aspects for human health risk assessments[J]. Agric Food Chem,2005(53):8829−8833.
|
[63] |
AGRAFIOTI E, KALDERIS D, DIAMADOPOULOS E, et al. Ca and Fe modified biochars as adsorbents of arsenic and chromium in aqueous solutions[J]. Environ Manag,2014(146):444−450.
|
[64] |
GU H H, QIU H, TIAN T, et al. Mitigation effects of silicon rich amendments on heavy metal accumulation in rice (Oryza sativa L.) planted on multi-metal contaminated acidic soil[J]. Chemosphere,2011(83):1234−1240.
|
[65] |
SELEIMAN M F, KHEIR A M S. Heavy metals uptake and their availability in contaminated clay and sandy alkaline soils as affected by inorganic and organic amendments[J]. Chemosphere,2018(204):514−522.
|
[66] |
AMAN U. 保障镉、砷、铬和铅污染土壤中稻米安全生产的高效钝化剂的研究[D]. 北京: 中国农业科学院, 2020.
AMAN U. Study on high efficiency passivator for rice safety production in CD AS Cr and PB contaminated soil[D]. Beijing: Chinese Academy of Agricultural Sciences, 2020.
|
[67] |
SARFRAZ R, SHAKOOR A, ABDULLAH M, et al. Impact of integrated application of biochar and nitrogen fetilizers on maize growth and nitrogen recovery in alkaline calcareous soil[J]. Soil Science and Plant Nutrition,2017,63(5):488−498. doi: 10.1080/00380768.2017.1376225
|
[68] |
REHMAN M Z, RIZWAN M, GHAFOOR A, et al. Effect of inorganic amendments for in situ stabilization of cadmium in contaminated soils and its phyto-availability to wheat and rice under rotation[J]. Environmental Science and Pollution Research,2015,22(21):16897−16906. doi: 10.1007/s11356-015-4883-y
|
[69] |
DENG F, LI W, WANG L, et al. Effect of controlled-release fertilizers on leaf characteristics, grain yield, and nitrogen use efficiency of machine-transplanted rice in southwest China[J]. Archives of Agronomy and Soil Science,2021,67(13):1739−1753. doi: 10.1080/03650340.2020.1807519
|
[70] |
PENG X, LIU F, WANG W X, et al. Reducing total mercury and methyl mercury accumulation in rice grains through water management and deliberate selection of rice cultivars[J]. Environ Poll,2012(162):202−208.
|
[71] |
PAN W S, WU C, XUE S G, et al. Arsenic dynamics in the rhizosphere and its sequestration on rice roots as affected by root oxidation[J]. Environ,2014(26):892−899.
|
[72] |
宗良纲, 徐晓炎. 水稻对土壤中镉的吸收及其调控措施[J]. 生态学杂志,2004(3):120−123. [ZONG L G, XU X Y. Cadmium absorption of rice from soils and remediations[J]. Chinese Journal of Ecology,2004(3):120−123. doi: 10.3321/j.issn:1000-4890.2004.03.025
|
[73] |
LI H, LUO N, LI Y W, et al. Cadmium in rice: Transport mechanisms, influencing factors, and minimizing measures[J]. Environmental Pollution,2017,224:622−630. doi: 10.1016/j.envpol.2017.01.087
|
[74] |
刘利, 郝小花, 田连福, 等. 植物吸收、转运和积累镉的机理研究进展[J]. 生命科学研究,2015,19(2):176−184. [LIU L, HAO X H, TIAN L F, et al. Research progresses on the mechanism of Cd absorption, transport and accumulation in plant[J]. Life Science Research,2015,19(2):176−184. doi: 10.16605/j.cnki.1007-7847.2015.02.015
|
[75] |
LIN X Y, MOU R X, CAO Z Y, et al. Characterization of cadmium-resistant bacteria and their potential for reducing accumulation of cadmium in rice grains[J]. Science of the Total Environment,2016,569:97−104.
|
[76] |
FATHOLLAHI A, KHASTEGANAN N, COUPE S J, et al. A meta-analysis of metal biosorption by suspended bacteria from three phyla[J]. Chemosphere,2021(268):129290.
|
[77] |
刘寿涛. 表面流人工湿地对灌溉水源中镉的阻控机理及效果研究[D]. 长沙: 湖南农业大学, 2019.
LIU S T. Mechanism and effect of surface-flow constructed wetland on the inhibition and control of cadmium in irrigation water source[D]. Changsha: Hunan Agricultural University, 2019.
|
[78] |
SURIYAGODA L D B, DITTERT K, LAMBERS H. Mechanism of arsenic uptake, translocation and plant resistance to accumulate arsenic in rice grains[J]. Agric Ecosyst Environ,2018(253):23−37.
|
[79] |
SONG W Y, YAMAKI T, YAMA J N, et al. A rice ABC transporter OsABCC1 reduces arsenic accumulation in the grain[J]. Proc Natl Acad,2014(111):15699−15704.
|
[80] |
XU J M, SHI S L, WANG L, et al. OsHAC4 is critical for arsenate tolerance and regulates arsenic accumulation in rice[J]. New Phytol,2017,215(3):1090−1101. doi: 10.1111/nph.14572
|
[81] |
SHI S, WANG T, CHEN Z, et al. OsHAC1;1 and OsHAC1;2 function as arsenate reductases and regulate arsenic accumulation[J]. Plant Physiol,2016(172):1708−1719.
|
[82] |
GONZALEZ P S, TALANO M A, OLLER A L W, et al. Update on mechanisms involved in arsenic and chromium accumulation, translocation and homeostasis in plants[J]. Transport and Accumulation in Plants,2014(33):45−72.
|
[83] |
刘芬, 陈桂华, 王悦, 等. 水稻淡黄叶突变体xws的光合特性与基因定位[J]. 核农学报,2022,36(6):1080−1088. [LIU F, CHEN G H, WANG Y, et al. Photosynthetic characteristics and gene mapping of a yellow-leaf mutant xws[J]. Journal of Nuclear Agriculture,2022,36(6):1080−1088. doi: 10.11869/j.issn.100-8551.2022.06.1080
|
[84] |
LONG Z, HUANG Y, ZHANG W, et al. Effect of different industrial activities on soil heavy metal pollution, ecological risk, and health risk[J]. Environ Monit Assess,2021(20):193.
|
[85] |
袁余洋, 刘属灵, 刘永林, 等. 重庆江津区自产大米和玉米中重金属的健康风险评价[J]. 湖南农业大学学报(自然科学版),2021,47(6):677−683. [YUAN Y Y, LIU S L, LIU Y L, et al. Health risk assessment of heavy metals in locally grown rice and maize from Jiangjin District, Chongqing[J]. Journal of Hunan Agricultural University,2021,47(6):677−683. doi: 10.13331/j.cnki.jhau.2021.06.011
|
[86] |
IHEDIOHA J N, ABUGU. Ecological and human health risk evaluation of potential toxic metals in paddy soil, rice plants, and rice grains (Oryza sativa) of omor rice field[J]. Nigeria. Environ Monit Assess,2021(193):620.
|
[87] |
WU J H, ZHANG Y X, ZHOU H. Groundwater chemistry and groundwater quality index incorporating health risk weighting in Ding Bian County Ordos basin of northwest China[J]. Geochemistry,2020,80(4):1223−1238.
|
[88] |
吴科堰, 范成五, 刘桂华, 等. 黔西南某农用地土壤重金属风险评估与来源解析[J]. 西南农业学报,2021,34(8):1721−1727. [WU K Y, FAN CH W, LIU G H, et al. Risk assessment and source apportionment of heavy metals in soil of an agricultural land in southwest Guizhou[J]. Journal of Southwest Agricultural Sciences,2021,34(8):1721−1727. doi: 10.16213/j.cnki.scjas.2021.8.021
|
[89] |
NAG R, AUER A, MRAKEY B K, et al. Anaerobic digestion of agricultural manure and biomass–critical indicators of risk and knowledge gaps[J]. Science of the Total Environment,2019,690(NOV.10):460−479.
|
[90] |
国家食品药品监督管理总局, 国家卫生和计划生育委员会. GB 2762-2017食品安全国家标准 食品中污染物限量[S]. 北京: 中国标准出版社, 2017.
State Food and Drug Administration, National Health and Family Planning Commission. GB 2762-2017 National food safety standards. Pollutant limit in food[S].Beijing: China Standards Press, 2017.
|
[91] |
GAO J, WANG L. Ecological and human health risk assessments in the context of soil heavy metal pollution in a typical industrial area of Shanghai China[J]. Environmental Science and Pollution Research,2018,25(9):27090−27105.
|
[92] |
张昌, 任晓雨, 崔航, 等. 黑龙江省水稻主产区大米中镉含量及膳食暴露评估[J]. 黑龙江八一农垦大学学报,2021,33(2):55−61. [ZHANG C, REN X Y, CUI H, et al. Assessment of cadmium content and dietary exposure in rice from the main rice-producing areas in Heilongjiang[J]. Journal of Heilongjiang Bayi Agricultural University,2021,33(2):55−61. doi: 10.3969/j.issn.1002-2090.2021.02.008
|
[93] |
SONG Y, WANG Y, MAO W F, et al. Dietary cadmium exposure assessment among the Chinese population[J]. PLoS One,2017,12(5):e0177978. doi: 10.1371/journal.pone.0177978
|
[94] |
叶文慧, 张东杰, Monte Carlo. 对大米为来源的镉膳食暴露风险评估的初步研究[J]. 中国酿造,2008(10):52−54. [YE W H, ZHANG D J, MONET C. Primary study on risk assessment of dietary cadmium exposure in rice by monte carlo simulation[J]. China Brew,2008(10):52−54.
|
[95] |
蒋玉艳, 马宁, 蒙浩洋, 等. 广西居民重金属镉膳食摄入水平及其健康风险评估[J]. 中国食品卫生杂志,2021,33(2):191−195. [JIANG Y Y, MA N, MENG H Y, et al. Dietary intake and health risk assessment of heavy metal cadmium in Guangxi residents[J]. Food Safety,2021,33(2):191−195.
|