JIANG Shasha, HUO Yonghong, LI Dehai, et al. Analysis of Heavy Metal Pollution in Rice and Its Status of Risk Assessment[J]. Science and Technology of Food Industry, 2023, 44(2): 417−426. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022010215.
Citation: JIANG Shasha, HUO Yonghong, LI Dehai, et al. Analysis of Heavy Metal Pollution in Rice and Its Status of Risk Assessment[J]. Science and Technology of Food Industry, 2023, 44(2): 417−426. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022010215.

Analysis of Heavy Metal Pollution in Rice and Its Status of Risk Assessment

More Information
  • Received Date: January 27, 2022
  • Available Online: November 16, 2022
  • Rice not only plays an important role in people's daily diet, but also makes a huge contribution to China's agricultural products trade. However, heavy metal contamination in rice has become one of the main hazards about rice production and human health in China. In this paper, the main sources, existing forms, detection and analysis methods of heavy metal contamination in rice are reviewed, furthermore, the current situation, prevention and control measures, risk assessment of heavy metal contamination in rice are summarized. This review would provide a theoretical reference for the effective prevention and control, and the accurate risk assessment of heavy metal contamination in rice.
  • [1]
    HUANG J, GUO S, ZENG G M, et al. A new exploration of health risk assessment quantification from sources of soil heavy metals under different land use[J]. Environmental Pollution,2018,243:49−58. doi: 10.1016/j.envpol.2018.08.038
    [2]
    杨文蕾, 沈亚婷. 水稻对砷吸收的机理及控制砷吸收的农艺途径研究进展[J]. 岩矿试,2020,39(4):475−492. [YANG W L, SHEN Y T. Mechanism of arsenic uptake by rice and agronomic approaches to control arsenic uptake[J]. Rock Test,2020,39(4):475−492.
    [3]
    孔宪琴, 张小惠, 李春生, 等. 水稻等重要作物种子的保存与管理体系探究[J]. 中国稻米,2018,24(4):91−95. [KONG X Q, ZHANG X H, LI C S, et al. Study on seed conservation and management system of rice and other important crops[J]. China Rice,2018,24(4):91−95. doi: 10.3969/j.issn.1006-8082.2018.04.022
    [4]
    NAG R, OROURKE S M, CUMMINS E. Risk factors and assessment strategies for the evaluation of human or environmental risk from metal(loid)s-a focus on Ireland[J]. Sci Total Environ,2021,24(8):149839.
    [5]
    YANG D Q, LIU S X, XIA S P, et al. Effects of cadmium stress on the growth of rice seedlings[J]. Agricultural Science & Technology,2019,20(3):11−16.
    [6]
    魏益民, 魏帅, 郭波莉, 等. 含镉稻米的分布及治理技术概述[J]. 食品科学技术学报,2013,31(2):1−6. [WEI Y M, WEI S, GUO B L, et al. Distribution and control techniques of rice containing cadmium[J]. Journal of Food Science and Technology,2013,31(2):1−6. doi: 10.3969/j.issn.2095-6002.2013.02.001
    [7]
    中华人民共和国国家卫生和计划生育委员会. 国家食品药品监督管理总局. GB 2761-2017 食品安全国家标准 食品中污染物限量[S]. 北京: 中国标准出版社, 2017.

    National Health and Family Planning Commission. China Food and Drug Administration. GB 2761-2017 National standard for food safety. Limits for contaminants in food[S]. Beijing: China Standard Press, 2017.
    [8]
    JIANG K, DENG X, ZHOU H N, et al. Health risk assessment of Cd pollution in irrigatedpaddy field system: A field investigation in Hunan Province, China[J]. Human and Ecological Risk Assessment: An International Journal,2021,27(2):352−367. doi: 10.1080/10807039.2020.1715203
    [9]
    DENG MEIHUA, MALIK A, ZHANG Q, et al. Improving Cd risk managements of rice cropping system by integrating source-soi-rice-human chain for a typical intensive industrial and agricultural region[J]. Journal of Cleaner Production,2021,313:127883. doi: 10.1016/j.jclepro.2021.127883
    [10]
    QIONG Y, ZHONG F Y. Ecological risk assessment of Cd and other heavy metals in soil-rice system in the karst areas with high geochemical background of Guangxi, China[J]. Science China (Earth Sciences),2021,64(7):1126−1139. doi: 10.1007/s11430-020-9763-0
    [11]
    王玥. pH和淹水条件对水稻与东南景天间作体系中水稻吸收镉的影响[D]. 广州: 华南农业大学, 2018.

    WANG Y. Effects of pH and flooding conditions on cadmium uptake by rice in intercropping system with sedum al frediyhance[D]. Guangzhou: South China Agricultural University, 2018.
    [12]
    SUN L J, WANG J, SONG K, et al. Transcriptome analysis of rice (Oryza sativa L.) shoots responsive to cadmium stress[J]. Scientific Reports,2019,9(1−2):10177.
    [13]
    LUO Y, HUANG D, WU L, et al. The impact of metal silos on rice storage and storage losses in China[J]. Food Sec,2021,14(1):81−92.
    [14]
    KONG F, LU S. Soil inorganic amendments produce safe rice by reducing the transfer of Cd and increasing key amino acids in brown rice[J]. Journal of Environmental Sciences,2022(1):1001−0742.
    [15]
    郑涵. 稻田土壤中Cd形态与有效性主要影响因子与调控关键技术[D]. 北京: 中国农业科学院, 2020.

    ZHENG H. Main influencing factors and key regulation techniques of CD form and availability in paddy soil[D]. Beijing: Chinese Academy of Agricultural Sciences, 2020.
    [16]
    陈义芳, 周卫东, 刘爱平, 等. 水稻籽粒不同部位P与Al、Cd、Pb含量的关系[J]. 江苏农业学报,2007(2):93−97. [CHEN Y F, ZHOU W D, LIU A P, et al. Relationship between P and Al, Cd, PB contents in different parts of rice grain[J]. Jiangsu Agricultural Journal,2007(2):93−97. doi: 10.3969/j.issn.1000-4440.2007.02.003
    [17]
    HAO X H, ZENG M, WANG J, et al. A node-expressed transporter OsCCX2 is involved in grain cadmium accumulation of rice[J]. Frontiers in Plant Science,2018,9:476. doi: 10.3389/fpls.2018.00476
    [18]
    魏帅. 稻米中镉元素分布部位及赋存形态研究[D]. 北京: 中国农业科学院, 2016.

    WEI S. Distribution and speciation of CD in rice[D]. Beijing: Chinese Academy of Agricultural Sciences, 2016.
    [19]
    WILLIAMS P N, ZHANG H, DAVISON W, et al. Organic matter solid phase interactions are critical for predicting arsenic release and plant uptake in Bangladesh paddy soils[J]. Environ Technol,2011,45(14):6080−6087. doi: 10.1021/es2003765
    [20]
    张昌. 黑龙江主产区土壤-水稻系统重金属转移建模及风险评估[D]. 大庆: 黑龙江八一农垦大学, 2020.

    ZHANG C. Transfer modeling and risk assessment of heavy metals in soil-rice system in main production areas of Heilongjiang[D]. Daqing: Heilongjiang Bayi Agricultural University, 2020.
    [21]
    YONG F, SUN X, YANG W, et al. Concentrations and health risks of lead, cadmium, arsenic, and mercury in rice and edible mushrooms in China[J]. Food Chemistry,2014,147(15):147−151.
    [22]
    韩晶. 辽宁地区大米中重金属检测探析[J]. 食品安全导刊,2021(36):109−111, 115. [HAN J. Detection of heavy metals in rice in Liaoning province[J]. Food Safety Guide,2021(36):109−111, 115. doi: 10.3969/j.issn.1674-0270.2021.36.spaqdk202136043
    [23]
    李颖, 刘国, 谢强, 等. 邯郸市某冶炼厂周边小麦体内重金属含量研究[J]. 四川环境,2017,36(4):43−46. [LI Y, LIU G, XIE Q, et al. Study on heavy metal contents in wheat around a smelter in Handan[J]. Sichuan Environment,2017,36(4):43−46. doi: 10.14034/j.cnki.schj.2017.04.009
    [24]
    覃焱, 韦燕燕, 顾明华. 中国市售大米重金属含量及健康风险评估[J]. 食品工业,2020,41(11):332−335. [TAN Y, WEI Y Y, GU M H. Heavy metal content and health risk assessment of rice sold in China[J]. Food Industry,2020,41(11):332−335.
    [25]
    何露露, 贾非然, 李欣童, 等. 南京市市售大米、蔬菜中6种微量元素含量调查及健康风险评估[J]. 职业与健康,2020,36(24):3364−3367. [HE L L, JIA F R, LI X T, et al. Investigation and health risk assessment of 6 micronutrient in rice and vegetables sold in Nanjing[J]. Occupation and Health,2020,36(24):3364−3367. doi: 10.13329/j.cnki.zyyjk.20201019.001
    [26]
    刘文慧. 安徽某地农田土壤重金属生态风险评价[D]. 合肥: 合肥工业大学, 2020.

    LIU W H. Ecological risk assessment of heavy metals in farmland soils in Anhui province[D]. Hefei: Hefei University of Technology, 2020.
    [27]
    邹勇, 曾卓华, 方立魁, 等. 优质重庆高山贡米筛选及其理化成分与食味特性关系研究[J]. 中国粮油学报,2022,37(3):17−24. [ZOU Y, ZENG Z H, FANG L K, et al. Screening of high-quality Gongmi from Chongqing mountain and study on the relationship between its physicochemical components and eating characteristics[J]. Chinese Journal of Grain and Oil,2022,37(3):17−24. doi: 10.3969/j.issn.1003-0174.2022.03.004
    [28]
    MIHUCZ V G, SILVERSMIT G, SZALOKI I, et al. Removal of some elements from washed and cooked rice studied by inductively coupled plasma mass spectrometry and synchrotron based confocal micro-X-ray fluorescence[J]. Food Chemistry,2010,121(1):290−297. doi: 10.1016/j.foodchem.2009.11.090
    [29]
    FENG W, FAN D, LI K, et al. Removal of cadmium from rice grains by acid soaking and quality evaluation of decontaminated rice[J]. Food Chemistry,2021,371:131099.
    [30]
    余雅芹. 食品中铅污染状况及其健康风险评价研究[D]. 武汉: 武汉轻工大学, 2014.

    YU Y C. Study on the status and health risk assessment of lead contamination in food[D]. Wuhan: Wuhan Polytechnic University, 2014.
    [31]
    SIRIANG K W, ITTICHAN P, PONHONG K, et al. Stripping voltametric determination of trace cadmium and lead in Thai organic unpolished rice after ultrasound-assisted digestion[J]. Journal of Food Composition and Analysis,2017,59:145−152. doi: 10.1016/j.jfca.2017.02.018
    [32]
    黄晓玮. 原子吸收光谱法及重金属快速检测在大米镉含量检测中的应用对比[J]. 食品安全导刊,2017(30):108−109. [HUANG X W. Comparison of the application of atomic absorption spectroscopy and heavy metals in the determination of cadmium in rice[J]. Food Safety Guide,2017(30):108−109. doi: 10.3969/j.issn.1674-0270.2017.30.086
    [33]
    李金桥. 原子荧光法测定镉元素的技术研究[J]. 生物化工,2020,6(1):91−93. [LI J J. A technical study on the determination of cadmium by atomic fluorescence spectrometry[J]. Biochemical Engineering,2020,6(1):91−93. doi: 10.3969/j.issn.2096-0387.2020.01.026
    [34]
    KAARE J, AMUND M, SKAAR N H, et al. Determination of arsenic, cadmium, mercury, and lead by inductively coupled plasma/mass spectrometry in foods after pressure digestion: NMKL interlaboratory study[J]. Journal of AOAC International,2017(3):846−858.
    [35]
    温丹华. 基于EDXRF技术对大米中Cd检测方法的研究[D]. 太原: 山西大学, 2019.

    WEN D H. Research on the detection method of Cd in rice based on EDXRF technology[D]. Taiyuan: Shanxi University, 2019.
    [36]
    刘艳梅, 钟辉, 黄建芳, 等. 直接竞争ELISA检测大米样品中的重金属镉[J]. 免疫学杂志,2015,31(6):528−532. [LIU Y M, ZHONG H, HUANG J F, et al. Direct competitive ELISA for the detection of cadmium in rice samples[J]. Journal of Immunology,2015,31(6):528−532. doi: 10.13431/j.cnki.immunol.j.20150112
    [37]
    韩晓红. 食品中镉、铁离子可视化快速检测方法研究[D]. 天津: 天津科技大学, 2018.

    HAN X H. Study on visualized rapid detection method of cadmium and iron in food[D]. Tianjin: Tianjin University of Science and Technology, 2018.
    [38]
    彭斓兰, 陈季旺, 陈超凡, 等. GFAAS法测定大米中无机锡的前处理条件优化[J]. 武汉轻工大学报,2019,38(1):1−8. [PENG L, CHEN J W, CHEN C F, et al. Optimization of pretreatment conditions for determination of inorganic tin in rice by GFAAS[J]. Wuhan Polytechnic University,2019,38(1):1−8.
    [39]
    MUDILA H, PRASHER P, KUMAR M, et al. An insight into cadmium poisoning and its removal from aqueous sources by graphene adsorbents[J]. International Journal of Environmental Health Research,2018:1−21.
    [40]
    刘斌, 黎天勇, 蔡扬尧. “镉大米”的现状、危害及修复方法简述[J]. 现代食品,2018(21):86−89. [LIU B, LI T Y, CAI Y Y. Status harm and remediation of cadmium rice[J]. Modern Food,2018(21):86−89. doi: 10.16736/j.cnki.cn41-1434/ts.2018.21.029
    [41]
    李艳飞, 谢昌平, 李德洁, 等. 柳州地区自产大米中镉、铅和砷污染状况及其健康风险评价[J]. 中国卫生检验杂志,2020,30(24):3026−3029. [LI Y F, XIE C P, LI D J, et al. Contamination status and health risk assessment of cadmium lead and arsenic in home-grown rice in Liuzhou[J]. Chinese Journal of Health Inspection,2020,30(24):3026−3029.
    [42]
    FREIJE A M. Heavy metal, trace element and petroleum hydrocarbon pollution in the Arabian Gulf: Review[J]. Journal of the Association of Arab Universities for Basic & Applied Sciences,2015(17):90−100.
    [43]
    XU X, ZHAO Y, ZHAO X, et al. Sources of heavy metal pollution in agricultural soils of a rapidly industrializing area in the Yangtze delta of China[J]. Ecotoxicology & Environmental Safety,2014(108):161−167.
    [44]
    LI H, ZHANG H, YANG Y, et al. Effects and oxygen-regulated mechanisms of water management on cadmium (Cd) accumulation in rice (Oryza sativa)[J]. Science of the Total Environment,2022,846:157484. doi: 10.1016/j.scitotenv.2022.157484
    [45]
    ZOU M M, ZHOU S L, ZHOU Y J, et al. Cadmium pollution of soil-rice ecosystems in rice cultivation dominated regions in China: A review[J]. Environmental Pollution,2021,280:116965. doi: 10.1016/j.envpol.2021.116965
    [46]
    HE M, SHEN H, LI Z, et al. Ten-year regional monitoring of soil-rice grain contamination by heavy metals with implications for target remediation and food safety[J]. Environ Pollut,2019(244):431−439.
    [47]
    ZHANG X F, YU H Y, LI F B, et al. Behaviors of heavy metal(loid)s in a contaminated alkaline paddy soil throughout the growth period of rice[J]. Total Environ,2020,7(16):136−204.
    [48]
    LUO J S, HUANG J, ZENG D L, et al. A defensin-like protein drives cadmium efflux and allocation in rice[J]. Nature Communications,2018,9(1):645. doi: 10.1038/s41467-018-03088-0
    [49]
    XU P, WU J, WANG H, et al. Long-term partial substitution of chemical fertilizer with green manure regulated organic matter mineralization in paddy soil dominantly by modulating organic carbon quality[J]. Plant Soil,2021,48(1-2):459−473.
    [50]
    PHUC H D, KIDO T, OANH N T P, et al. Effects of aging on cadmium concentrations and renal dysfunction in inhabitants in cadmium-polluted regions in Japan[J]. Journal of Applied Toxicology,2017,37(9):1046−1052. doi: 10.1002/jat.3455
    [51]
    SCHAEFER J K, ROCKS S S, ZHENG W, et al. Active transport, substrates pecificity and methylation of Hg(I) in anaerobic bacteria[J]. Proc Nat Acad,2011(108):8714−8719.
    [52]
    RAHMAN M A, SAHA B K, CHOWDHURY M H, et al. Public perception and health implication of loom-dye effluent irrigation on growth of rice (Oryza sativa L.) and red amaranth (Amaranthus tricolor L.) seedlings[J]. Environmental Science and Pollution Research,2020,27(16):19410−19427. doi: 10.1007/s11356-020-08377-0
    [53]
    周枭潇, 毕春娟, 汪萌, 等. 大气沉降对叶菜重金属的污染效应及其健康风险[J]. 华东师范大学学报:自然科学版,2018(2):141−150. [ZHOU X X, BI C J, WANG M, et al. Effects of atmospheric deposition on heavy metals in leafy vegetables and their health risks[J]. Proceedings of the East China Normal University: Natural Science,2018(2):141−150.
    [54]
    ASHRAF U, KANU A S, MO Z W, et al. Lead toxicity in rice effects, mechanisms and mitigation strategies-a mini review[J]. Environ Pollut Res,2015,22(23):18318−18332. doi: 10.1007/s11356-015-5463-x
    [55]
    赵多勇. 工业区典型重金属来源及迁移途径研究[D]. 北京: 中国农业科学院, 2012.

    ZHAO D Y. Source identification apportionment and transfer route of typical heavy metal in an industrial area[D]. Beijing: Chinese Academy of Agricultural Sciences, 2012.
    [56]
    WEI X, GAO B, WANG P, et al. Pollution characteristics and health risk assessment of heavy metals in street dusts from different functional areas in Beijing, China[J]. Ecotoxicology and Environmental Safety,2015(5):186−192.
    [57]
    ROTHENBERG S E, FENG X, ZHOU W, et al. Environment and genotype controls on mercury accumulation in rice (Oryza sativa L.) cultivated along a contamination gradient in Guizhou China[J]. Total Environ,2012,426(1):272−280.
    [58]
    许继平, 胡进, 叶宏, 等. 加工过程对稻麦重金属含量影响研究进展[J]. 现代食品科技,2019,35(11):300−309. [XU J P, HU J, YE H, et al. Effects of processing on heavy metal contents in rice and wheat[J]. Modern Food Technology,2019,35(11):300−309. doi: 10.13982/j.mfst.1673-9078.2019.11.041
    [59]
    田阳. 稻米加工技术对产品镉含量的影响[D]. 北京: 中国农业科学院, 2013.

    TIAN Y. Study on the effect of rice processing on the cadmium concentration of products[D]. Beijing: Chinese Academy of Agricultural Sciences, 2013.
    [60]
    SHARAFI K, YUNESIAN M, MAHVI A H, et al. The reduction of toxic metals of various rice types by different preparation and cooking processes: Human health risk assessment in Tehran households, Iran[J]. Food Chemistry,2019,175:128−137.
    [61]
    谢国雄, 楼旭平, 姜铭北, 等. 大气沉降对水稻各器官铅镉汞砷积累的影响[J]. 中国农学通报,2020,36(22):86−91. [XIE G X, LOU X P, JIANG M B, et al. Effects of atmospheric deposition on accumulation of PB Cd, HG and as in organs of rice[J]. Bulletin of Chinese Agronomy,2020,36(22):86−91.
    [62]
    LAPARRA J M, VELEZ D, BARBERA R, et al. Bioavailability of inorganic arsenic in cooked rice: Practical aspects for human health risk assessments[J]. Agric Food Chem,2005(53):8829−8833.
    [63]
    AGRAFIOTI E, KALDERIS D, DIAMADOPOULOS E, et al. Ca and Fe modified biochars as adsorbents of arsenic and chromium in aqueous solutions[J]. Environ Manag,2014(146):444−450.
    [64]
    GU H H, QIU H, TIAN T, et al. Mitigation effects of silicon rich amendments on heavy metal accumulation in rice (Oryza sativa L.) planted on multi-metal contaminated acidic soil[J]. Chemosphere,2011(83):1234−1240.
    [65]
    SELEIMAN M F, KHEIR A M S. Heavy metals uptake and their availability in contaminated clay and sandy alkaline soils as affected by inorganic and organic amendments[J]. Chemosphere,2018(204):514−522.
    [66]
    AMAN U. 保障镉、砷、铬和铅污染土壤中稻米安全生产的高效钝化剂的研究[D]. 北京: 中国农业科学院, 2020.

    AMAN U. Study on high efficiency passivator for rice safety production in CD AS Cr and PB contaminated soil[D]. Beijing: Chinese Academy of Agricultural Sciences, 2020.
    [67]
    SARFRAZ R, SHAKOOR A, ABDULLAH M, et al. Impact of integrated application of biochar and nitrogen fetilizers on maize growth and nitrogen recovery in alkaline calcareous soil[J]. Soil Science and Plant Nutrition,2017,63(5):488−498. doi: 10.1080/00380768.2017.1376225
    [68]
    REHMAN M Z, RIZWAN M, GHAFOOR A, et al. Effect of inorganic amendments for in situ stabilization of cadmium in contaminated soils and its phyto-availability to wheat and rice under rotation[J]. Environmental Science and Pollution Research,2015,22(21):16897−16906. doi: 10.1007/s11356-015-4883-y
    [69]
    DENG F, LI W, WANG L, et al. Effect of controlled-release fertilizers on leaf characteristics, grain yield, and nitrogen use efficiency of machine-transplanted rice in southwest China[J]. Archives of Agronomy and Soil Science,2021,67(13):1739−1753. doi: 10.1080/03650340.2020.1807519
    [70]
    PENG X, LIU F, WANG W X, et al. Reducing total mercury and methyl mercury accumulation in rice grains through water management and deliberate selection of rice cultivars[J]. Environ Poll,2012(162):202−208.
    [71]
    PAN W S, WU C, XUE S G, et al. Arsenic dynamics in the rhizosphere and its sequestration on rice roots as affected by root oxidation[J]. Environ,2014(26):892−899.
    [72]
    宗良纲, 徐晓炎. 水稻对土壤中镉的吸收及其调控措施[J]. 生态学杂志,2004(3):120−123. [ZONG L G, XU X Y. Cadmium absorption of rice from soils and remediations[J]. Chinese Journal of Ecology,2004(3):120−123. doi: 10.3321/j.issn:1000-4890.2004.03.025
    [73]
    LI H, LUO N, LI Y W, et al. Cadmium in rice: Transport mechanisms, influencing factors, and minimizing measures[J]. Environmental Pollution,2017,224:622−630. doi: 10.1016/j.envpol.2017.01.087
    [74]
    刘利, 郝小花, 田连福, 等. 植物吸收、转运和积累镉的机理研究进展[J]. 生命科学研究,2015,19(2):176−184. [LIU L, HAO X H, TIAN L F, et al. Research progresses on the mechanism of Cd absorption, transport and accumulation in plant[J]. Life Science Research,2015,19(2):176−184. doi: 10.16605/j.cnki.1007-7847.2015.02.015
    [75]
    LIN X Y, MOU R X, CAO Z Y, et al. Characterization of cadmium-resistant bacteria and their potential for reducing accumulation of cadmium in rice grains[J]. Science of the Total Environment,2016,569:97−104.
    [76]
    FATHOLLAHI A, KHASTEGANAN N, COUPE S J, et al. A meta-analysis of metal biosorption by suspended bacteria from three phyla[J]. Chemosphere,2021(268):129290.
    [77]
    刘寿涛. 表面流人工湿地对灌溉水源中镉的阻控机理及效果研究[D]. 长沙: 湖南农业大学, 2019.

    LIU S T. Mechanism and effect of surface-flow constructed wetland on the inhibition and control of cadmium in irrigation water source[D]. Changsha: Hunan Agricultural University, 2019.
    [78]
    SURIYAGODA L D B, DITTERT K, LAMBERS H. Mechanism of arsenic uptake, translocation and plant resistance to accumulate arsenic in rice grains[J]. Agric Ecosyst Environ,2018(253):23−37.
    [79]
    SONG W Y, YAMAKI T, YAMA J N, et al. A rice ABC transporter OsABCC1 reduces arsenic accumulation in the grain[J]. Proc Natl Acad,2014(111):15699−15704.
    [80]
    XU J M, SHI S L, WANG L, et al. OsHAC4 is critical for arsenate tolerance and regulates arsenic accumulation in rice[J]. New Phytol,2017,215(3):1090−1101. doi: 10.1111/nph.14572
    [81]
    SHI S, WANG T, CHEN Z, et al. OsHAC1;1 and OsHAC1;2 function as arsenate reductases and regulate arsenic accumulation[J]. Plant Physiol,2016(172):1708−1719.
    [82]
    GONZALEZ P S, TALANO M A, OLLER A L W, et al. Update on mechanisms involved in arsenic and chromium accumulation, translocation and homeostasis in plants[J]. Transport and Accumulation in Plants,2014(33):45−72.
    [83]
    刘芬, 陈桂华, 王悦, 等. 水稻淡黄叶突变体xws的光合特性与基因定位[J]. 核农学报,2022,36(6):1080−1088. [LIU F, CHEN G H, WANG Y, et al. Photosynthetic characteristics and gene mapping of a yellow-leaf mutant xws[J]. Journal of Nuclear Agriculture,2022,36(6):1080−1088. doi: 10.11869/j.issn.100-8551.2022.06.1080
    [84]
    LONG Z, HUANG Y, ZHANG W, et al. Effect of different industrial activities on soil heavy metal pollution, ecological risk, and health risk[J]. Environ Monit Assess,2021(20):193.
    [85]
    袁余洋, 刘属灵, 刘永林, 等. 重庆江津区自产大米和玉米中重金属的健康风险评价[J]. 湖南农业大学学报(自然科学版),2021,47(6):677−683. [YUAN Y Y, LIU S L, LIU Y L, et al. Health risk assessment of heavy metals in locally grown rice and maize from Jiangjin District, Chongqing[J]. Journal of Hunan Agricultural University,2021,47(6):677−683. doi: 10.13331/j.cnki.jhau.2021.06.011
    [86]
    IHEDIOHA J N, ABUGU. Ecological and human health risk evaluation of potential toxic metals in paddy soil, rice plants, and rice grains (Oryza sativa) of omor rice field[J]. Nigeria. Environ Monit Assess,2021(193):620.
    [87]
    WU J H, ZHANG Y X, ZHOU H. Groundwater chemistry and groundwater quality index incorporating health risk weighting in Ding Bian County Ordos basin of northwest China[J]. Geochemistry,2020,80(4):1223−1238.
    [88]
    吴科堰, 范成五, 刘桂华, 等. 黔西南某农用地土壤重金属风险评估与来源解析[J]. 西南农业学报,2021,34(8):1721−1727. [WU K Y, FAN CH W, LIU G H, et al. Risk assessment and source apportionment of heavy metals in soil of an agricultural land in southwest Guizhou[J]. Journal of Southwest Agricultural Sciences,2021,34(8):1721−1727. doi: 10.16213/j.cnki.scjas.2021.8.021
    [89]
    NAG R, AUER A, MRAKEY B K, et al. Anaerobic digestion of agricultural manure and biomass–critical indicators of risk and knowledge gaps[J]. Science of the Total Environment,2019,690(NOV.10):460−479.
    [90]
    国家食品药品监督管理总局, 国家卫生和计划生育委员会. GB 2762-2017食品安全国家标准 食品中污染物限量[S]. 北京: 中国标准出版社, 2017.

    State Food and Drug Administration, National Health and Family Planning Commission. GB 2762-2017 National food safety standards. Pollutant limit in food[S].Beijing: China Standards Press, 2017.
    [91]
    GAO J, WANG L. Ecological and human health risk assessments in the context of soil heavy metal pollution in a typical industrial area of Shanghai China[J]. Environmental Science and Pollution Research,2018,25(9):27090−27105.
    [92]
    张昌, 任晓雨, 崔航, 等. 黑龙江省水稻主产区大米中镉含量及膳食暴露评估[J]. 黑龙江八一农垦大学学报,2021,33(2):55−61. [ZHANG C, REN X Y, CUI H, et al. Assessment of cadmium content and dietary exposure in rice from the main rice-producing areas in Heilongjiang[J]. Journal of Heilongjiang Bayi Agricultural University,2021,33(2):55−61. doi: 10.3969/j.issn.1002-2090.2021.02.008
    [93]
    SONG Y, WANG Y, MAO W F, et al. Dietary cadmium exposure assessment among the Chinese population[J]. PLoS One,2017,12(5):e0177978. doi: 10.1371/journal.pone.0177978
    [94]
    叶文慧, 张东杰, Monte Carlo. 对大米为来源的镉膳食暴露风险评估的初步研究[J]. 中国酿造,2008(10):52−54. [YE W H, ZHANG D J, MONET C. Primary study on risk assessment of dietary cadmium exposure in rice by monte carlo simulation[J]. China Brew,2008(10):52−54.
    [95]
    蒋玉艳, 马宁, 蒙浩洋, 等. 广西居民重金属镉膳食摄入水平及其健康风险评估[J]. 中国食品卫生杂志,2021,33(2):191−195. [JIANG Y Y, MA N, MENG H Y, et al. Dietary intake and health risk assessment of heavy metal cadmium in Guangxi residents[J]. Food Safety,2021,33(2):191−195.
  • Related Articles

    [1]LIAO Suqi, WANG Lijun, XIA Xianghua, FU Jin'e, WEI Shugen, LONG Hairong. Determination and Evaluation of Nutritional Components in Stem and Leaves of Kadsura cocinea[J]. Science and Technology of Food Industry, 2021, 42(5): 289-294. DOI: 10.13386/j.issn1002-0306.2020040276
    [2]TIAN Jing, LI Qiao-ling. Rapid Determination of Citric Acid and L-malic Acid Content for Pear Juice by Near Infrared Spectroscopy[J]. Science and Technology of Food Industry, 2018, 39(20): 227-232. DOI: 10.13386/j.issn1002-0306.2018.20.038
    [3]FU Qun, ZHAO Hong-hua, LIU Feng, REN Hong-bo, WEI Jun-qing, CHEN Guo-feng. Determination of five pesticides residues in wild vegetables by ultra performance liquid chromatography-tandem mass spectrometry[J]. Science and Technology of Food Industry, 2017, (15): 238-243. DOI: 10.13386/j.issn1002-0306.2017.15.044
    [4]XU Rui, TAN Hong, YANG Hong-bo, SUN Hai-da, HE Jin-lin. Determination of seven perfluorinated compounds in fast food papers by solid phase extraction couple with solid phase extraction and liquid chromatography-mass spectrometry[J]. Science and Technology of Food Industry, 2015, (06): 49-52. DOI: 10.13386/j.issn1002-0306.2015.06.001
    [5]HE Ming- feng, ZHOU Jian-wei, LIU Dong-hong. Review on migration and determination of bisphenol A and its epoxy derivatives in food can coatings[J]. Science and Technology of Food Industry, 2015, (01): 381-385. DOI: 10.13386/j.issn1002-0306.2015.01.072
    [6]WU Ying, ZHANG Hui, CUI Fang, JIANG Jie. Determination of Urotropine in dried beancurd sticks by ultra performance liquid chromatography-tandem mass spectrometry[J]. Science and Technology of Food Industry, 2014, (17): 298-300. DOI: 10.13386/j.issn1002-0306.2014.17.057
    [7]ZHOU Hong-xia, HUA Chun, TANG Hui-min. Determination of 20 pthalates in feed by Gas Chromatography-Mass Spectrometry[J]. Science and Technology of Food Industry, 2014, (10): 74-78. DOI: 10.13386/j.issn1002-0306.2014.10.007
    [8]WU Jing, LEI Hong-tao, SHEN Yu-dong, WANG Hong, YANG Jin-yi, SUN Yuan-ming, XU Zhen-lin. Trends in the determination of trace acrylamide in food products[J]. Science and Technology of Food Industry, 2013, (23): 380-385. DOI: 10.13386/j.issn1002-0306.2013.23.073
    [9]LI Chun-li, ZHU Xue-liang. Simultaneous determination of 16 kinds of phathalate plasticizers in wine by gas chromatography /triple quadrupole mass spectrometry[J]. Science and Technology of Food Industry, 2013, (21): 310-312. DOI: 10.13386/j.issn1002-0306.2013.21.083
    [10]YUAN Shi-lin, SHANG Yu, QIU Yang. A new method on determination of the total sugar content in edible fungi[J]. Science and Technology of Food Industry, 2013, (18): 78-79. DOI: 10.13386/j.issn1002-0306.2013.18.044

Catalog

    Article Metrics

    Article views (584) PDF downloads (67) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return