SHI Xinyi, FENG Yunqian, LI Yunping, et al. Study on Extraction Optimization of Anti-oxidants from Roots of Angiopteris fokiensis Hieron. [J]. Science and Technology of Food Industry, 2022, 43(11): 235−243. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021100212.
Citation: SHI Xinyi, FENG Yunqian, LI Yunping, et al. Study on Extraction Optimization of Anti-oxidants from Roots of Angiopteris fokiensis Hieron. [J]. Science and Technology of Food Industry, 2022, 43(11): 235−243. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021100212.

Study on Extraction Optimization of Anti-oxidants from Roots of Angiopteris fokiensis Hieron.

More Information
  • Received Date: October 20, 2021
  • Available Online: April 04, 2022
  • This study was performed to clarify the antioxidant capacity and components of roots of Angiopteris fokiensis. With Vitamin C equivalent antioxidant capacity (VCEAC) as the index, single factor experiments combined with orthogonal tests were carried out to optimize the extraction process of antioxidant components. The antioxidant capacity was also evaluated based on DPPH and ABTS radical scavenging assays. The chromogenic method of NaNO2-Al(NO3)3-NaOH and Folin-phenol was employed separately to determine the content of total flavonoids and total phenols, of which the correlation with VCEAC values was then analyzed based on Pearson method. The results demonstrated that the optimal extraction conditions were as follows: No.3 sieve, feed liquid ratio was 1:40 g/mL, volume fraction was 50%, extraction temperature was 60 ℃. Under these conditions, the sample was extracted with antioxidant capacity equivalent to 24.44 mg VC. The antioxidant capacity differed significantly between 11 batches of A. fokiensis: VCEAC values ranged from 9.41 to 29.32 mg/g; IC50 values ranged from 0.85 to 3.03 mg/mL determined by DPPH assay, and from 1.02 to 3.81 mg/mL determined by ABTS assay. The content of total flavonoids and total phenols ranged from 8.75 to 30.18 mg/g, and from 5.19 to 17.84 mg/g, respectively. The pearson analysis indicated that the content of total flavonoids or total phenols was correlated significantly with the VCEAC values of A. fokiensis (P<0.05). In conclusion, total flavonoids and total phenols in A. fokiensis were determined as the main antioxidant components with potential for further development.
  • [1]
    中国植物志编辑委员会. 中国植物志[M]. 第2版. 北京: 科学出版社, 2006: 57.

    The Editorial Board of Flora of China. Flora of China[M]. 2Nd Edition. Beijing: Science Press, 2006: 57.
    [2]
    张敬杰, 邹娟. 苗族药物彩色图谱[M]. 贵阳: 贵州科技出版社, 2017: 139.

    ZHANG J J, ZOU J. Colour atlas of Miao medicine[M]. Guiyang: Guizhou Science and Technology Publishing Press, 2017: 139.
    [3]
    贾敏如, 李星炜. 中国民族药志要[M]. 北京: 中国医药科技出版社, 2005: 46.

    JIA M R, LI X W. The records of Chinese ethnomedicine[M]. Beijing: China Medical Science Press, 2005: 46.
    [4]
    文晓琼, 胡颖, 曾晓君, 等. 福建观音座莲的化学成分研究[J]. 时珍国医国药,2012,23(1):1−2. [WEN X Q, HU Y, ZENG X J, et al. Chemical constituents from Angiopteris fokiensis[J]. Lishizhen Medicine and Materia Medica Research,2012,23(1):1−2. doi: 10.3969/j.issn.1008-0805.2012.01.001
    [5]
    张赟赟, 杨海船, 李嘉, 等. 瑶药马蹄蕨中脂溶性成分的GC-MS分析[J]. 中国药房,2015,26(18):2544−2546. [ZHANG Y Y, YANG H C, LI J, et al. GC-MS analysis on fat-soluble components in Yao medicine Angiopteris fokiensis[J]. China Pharmacy,2015,26(18):2544−2546. doi: 10.6039/j.issn.1001-0408.2015.18.33
    [6]
    周汉华, 张春华, 冯昀熠. 犀牛蹄的生药学研究及化学成分初探[J]. 中国民族民间医药,2008(9):4−6. [ZHOU H H, ZHANG C H, FENG Y Y. Study on the pharmacognosy and chemical constituents of Angiopteris fokiensis[J]. Chinese Journal of Ethnomedicine and Ethnopharmacy,2008(9):4−6. doi: 10.3969/j.issn.1007-8517.2008.09.002
    [7]
    张赟赟, 杨海船, 周萍, 等. 壮瑶药材马蹄蕨多糖的提取工艺及其3种单糖的含量测定方法研究[J]. 中国药房,2018(19):2667−2670. [ZHANG Y Y, YANG H C, ZHOU P, et al. Study on extraction process of Zhuang and Yao medicine Angiopteris fokiensis polysaccharide and determination method of 3 kinds of monosaccharides[J]. China Pharmacy,2018(19):2667−2670. doi: 10.6039/j.issn.1001-0408.2018.19.17
    [8]
    ZHOU B X, YANG Z F, FENG Q T, et al. Aurantiamide acetate from Baphicacanthus cusia root exhibits anti-inflammatory and anti-viral effects via inhibition of the NF-kappa B signaling pathway in influenza a virus-infected cells[J]. Journal of Ethnopharmacology,2017,199:60−67. doi: 10.1016/j.jep.2017.01.038
    [9]
    LAMICHHANE R, PANDEYA P R, LEE K H, et al. Anti-adipogenic and anti-inflammatory activities of (-)-epi-osmundalactone and angiopteroside from Angiopteris helferiana C. presl[J]. Molecules,2020,25(6):1337. doi: 10.3390/molecules25061337
    [10]
    FANG Y Z, YANG S, WU G Y. Free radicals, antioxidants, and nutrition[J]. Nutrition,2002,18(10):872−879. doi: 10.1016/S0899-9007(02)00916-4
    [11]
    VALKO M, LEIBFRITZ D, MONCOL J, et al. Free radicals and antioxidants in normal physiological functions and human disease[J]. International Journal of Biochemistry & Cell Biology,2007,39(1):44−84.
    [12]
    FORMAN H J, ZHANG H Q. Targeting oxidative stress in disease: Promise and limitations of antioxidant therapy[J]. Nature Reviews Drug Discovery,2021,20:689−709. doi: 10.1038/s41573-021-00233-1
    [13]
    ĎURAČKOVÁ Z. Some current insights into oxidative stress[J]. Physiological Research,2010,59(4):459−469.
    [14]
    CATARINO M D, ALVES-SILVA J M, PEREIRA O R, et al. Antioxidant capacities of flavones and benefits in oxidative-stress related diseases[J]. Current Topics in Medicinal Chemistry,2015,15(2):105−119. doi: 10.2174/1568026615666141209144506
    [15]
    LI C W, LI L L, CHEN S, et al. Antioxidant nonotherapies for the treatment of inflammatory diseases[J]. Frontiers in Bioengineering and Biotechnology,2020,8:200. doi: 10.3389/fbioe.2020.00200
    [16]
    江明珠, 颜辉, 闻燕. 马蹄蕨黄酮的纯化及抗氧化活性研究[J]. 安徽农业科学,2011,39(26):15922−15923. [JIANG M Z, YAN H, WEN Y. Purification of Horseshoe fern flavonoids and studies on its antioxidant activity[J]. Journal of Anhui Agricultural Sciences,2011,39(26):15922−15923. doi: 10.3969/j.issn.0517-6611.2011.26.034
    [17]
    张勇, 黄思涵, 林大都, 等. 福建观音座莲叶提取物不同萃取部位成分含量及与抗氧化相关性分析[J]. 食品工业科技,2021,42(14):49−54. [ZHANG Y, HUANG S H, LIN D D, et al. Analysis of the content of components in different extraction parts of Angiopteris fokiensis Hieron leaf extracts and their correlation in correltion with antioxidant activity[J]. Science and Technology of Food Industry,2021,42(14):49−54.
    [18]
    GONZÁLEZ E A, GARCÍA E M, NAZARENO M A. Free radical scavenging capacity and antioxidant activity of cochineal (Dactylopius coccus C.) extracts[J]. Food Chemistry,2010,119:358−362. doi: 10.1016/j.foodchem.2009.06.030
    [19]
    KIM D O, LEE K W, LEE H J, et al. Vitamin C equivalent antioxidant capacity (VCEAC) of phenolic phytochemicals[J]. Journal of Agricultural and Food Chemistry,2002,50:3713−3717. doi: 10.1021/jf020071c
    [20]
    THOO Y Y, HO S K, LIANG J Y, et al. Effects of binary solvent extraction system, extraction time and extraction temperature on phenolic antioxidants and antioxidant capacity from Mengkudu (Morinda citrifolia)[J]. Food Chemistry,2010,120:290−295. doi: 10.1016/j.foodchem.2009.09.064
    [21]
    任园宇, 魏东伟, 王中伟, 等. 亚硝酸钠-硝酸铝比色法测定干旱胁迫前后玉米幼苗的总黄酮含量[J]. 农学学报,2020,10(5):15−20. [REN Y Y, WEI D W, WANG Z W, et al. Total flavonoids in maize seedlings before and after drought stress: Determination with sodium nitrite-aluminum nitrate colorimetry[J]. Journal of Agriculture,2020,10(5):15−20. doi: 10.11923/j.issn.2095-4050.cjas20190800161
    [22]
    朱仙慕, 陈丹, 马国萍, 等. 叶下珠薄层色谱鉴别及福林酚法测定总多酚含量研究[J]. 中国中医药科技,2018,25(4):514−519. [ZHU X M, CHEN D, MA G P, et al. Study on thin layer chromatographic identification and determination of total polyphenols by folin ciocalteu method of Yexiazhu (Phyllanthus urinaria L.)[J]. Chinese Journal of Traditional Medical Science and Technology,2018,25(4):514−519.
    [23]
    宋越冬, 陈晓庆, 张毓敏, 等. 荞麦叶黄酮的提取工艺优化及其抗氧化性[J]. 食品工业科技,2021,42(7):180−187. [SONG Y D, CHEN X Q, ZHANG Y M, et al. Optimization of extraction process of flavonoids from Fagopyrum esculentum Moench leaves and its antioxidant properties[J]. Science and Technology of Food Industry,2021,42(7):180−187.
    [24]
    张艳军, 廖日权, 郑云云, 等. 火龙果花的体外抗氧化物提取工艺优化及其抗炎活性[J]. 食品工业科技,2018,39(18):137−142. [ZHANG Y J, LIAO R Q, ZHENG Y Y, et al. Optimization of extraction technology on antioxidants in vitro from pitaya flower and evaluation of anti-inflammatory activities[J]. Science and Technology of Food Industry,2018,39(18):137−142.
    [25]
    KIM D O, CHUN O K, KIM Y J, et al. Quantification of polyphenolics and their antioxidant capacity in fresh plums[J]. Journal of Agricultural and Food Chemistry,2003,51:6509−6515. doi: 10.1021/jf0343074
    [26]
    PATTANANANDECHA T, APICHAI S, SIRILUN S, et al. Anthocyanin profile, antioxidant, anti-inflammatory, and antimicrobial against foodborne pathogens activities of purple rice cultivars in northern Thailand[J]. Molecules,2021,26:5234. doi: 10.3390/molecules26175234
    [27]
    禄璐, 米佳, 罗青, 等. 枸杞总黄酮提取工艺优化及其体外抗氧化活性分析[J]. 食品工业科技,2019,40(24):165−171. [LU L, MI J, LUO Q, et al. Optimization of extraction process of flavonoids from Lycium barbarum L. var. auranticarpum K. F. Ching and its antioxidant activities in vitro[J]. Science and Technology of Food Industry,2019,40(24):165−171.
    [28]
    任冰如, 申玉香, 刘俊康, 等. 红凤菜抗氧化成分提取分离研究[J]. 食品工业科技,2016,37(17):153−156,161. [REN B R, SHEN Y X, LIU J K, et al. Isolation of the antioxidant components from Gynura bicolor[J]. Science and Technology of Food Industry,2016,37(17):153−156,161.
    [29]
    李楠, 杨欣, 孙元琳, 等. 20种花茶黄酮、总酚及抗氧化活性分析[J]. 食品研究与开发,2021,42(18):34−39. [LI N, YANG X, SUN Y L, et al. Flavones, total polyphenols and in vitro antioxidant activity in twenty kinds of herbal teas[J]. Food Research and Development,2021,42(18):34−39.
    [30]
    吴丽芬, 庞玉新, 杨全, 等. 柑橘属植物抗氧化活性物质及其机理研究进展[J]. 广东药学院学报,2014,30(4):521−524,529. [WU L F, PANG Y X, YANG Q, et al. Progress of Citrus on its active antioxidants and related mechanism[J]. Journal of Guangdong Pharmaceutical University,2014,30(4):521−524,529. doi: 10.3969/j.issn.1006-8783.2014.04.032
  • Related Articles

    [1]LI Na, LÜ Shuang, DONG Jianguo, LI Hongbo, ZHANG Ying, XU Dan, WU Yue, MO Haizhen. Analysis of Nutritional Components and Volatile Flavor Compounds in Common Edible Fungi[J]. Science and Technology of Food Industry, 2023, 44(18): 441-448. DOI: 10.13386/j.issn1002-0306.2022110173
    [2]LI Xianxiu, HE Tao, YANG Fan, WANG Chong, ZHOU Yi, SHA Ruyi, MAO Jianwei. Analysis of Nutritional Components, Functional Components and Bioactivity of Edible Dock[J]. Science and Technology of Food Industry, 2023, 44(3): 307-315. DOI: 10.13386/j.issn1002-0306.2022040234
    [3]ZHAO Wenting, CHEN Zhixian, ZHANG Haibo. Effect of Compound Probiotic Powder of Lactobacillus rhamnosus and Bifidobacterium lactis on the Immune Function of Mice and Its Edible Safety[J]. Science and Technology of Food Industry, 2022, 43(18): 380-389. DOI: 10.13386/j.issn1002-0306.2021120087
    [4]ZHU Chuang, YANG Li, XIAO Dengrong, XIAO Bin, NIE Pan, ZHONG Lingyue, SONG Lihua. Effects of Ultrasonic-assisted Treatment on Nutrition and Edible Quality of Germinated Brown Rice[J]. Science and Technology of Food Industry, 2021, 42(24): 48-54. DOI: 10.13386/j.issn1002-0306.2021040085
    [5]LUO Xiaoli, ZHANG Shasha, CAO Jingjing, ZHANG Weisi. Analysis of Nutritional Components and Evaluation of Protein Nutritional Value of Three Kinds of Gelatinous Edible Fungi in Yunnan[J]. Science and Technology of Food Industry, 2021, 42(14): 328-333. DOI: 10.13386/j.issn1002-0306.2020090143
    [6]Tingting GOU, Xuxu ZHENG, Rong PENG, Zhongyi YIN, Qian DING, Yang HE, Jishuang CHEN, Ying WANG. Selection of Edible Glue and the Changes of Nutritional Quality of Fermented Bean Dregs Curd[J]. Science and Technology of Food Industry, 2021, 42(10): 22-28. DOI: 10.13386/j.issn1002-0306.2020080117
    [7]ZHANG Xiao-mei, GUO Rui, SU Hong, LIU Hong-ying. Nutritional composition analysis and safety evaluation of Sargassum fusiforme[J]. Science and Technology of Food Industry, 2018, 39(4): 296-300,311.
    [8]SU Yong-chang, LIU Shu-ji, LIU Zhi-yu, LIU Qiu-feng, WANG Yin. Analysis and evaluation of nutritional components in tilapia byproduct[J]. Science and Technology of Food Industry, 2017, (14): 285-288. DOI: 10.13386/j.issn1002-0306.2017.14.056
    [9]SHENG Di, ZHU Lan-bao. Heavy metal content and safety evaluation of fish in Bengbu market[J]. Science and Technology of Food Industry, 2014, (22): 49-52. DOI: 10.13386/j.issn1002-0306.2014.22.001
    [10]ZHU Lan-bao, SHENG Di, QI Xiao-ming, LUO Xian-le. Heavy metal content and edible safety evaluation of vegetables in Bengbu[J]. Science and Technology of Food Industry, 2014, (07): 260-263. DOI: 10.13386/j.issn1002-0306.2014.07.058
  • Cited by

    Periodical cited type(9)

    1. 李文伟,瓮亚楠,刘慧,魏超昆. “半胱氨酸-葡萄糖”美拉德反应产物中肉香味工艺优化及结构表征. 中国食品添加剂. 2024(12): 71-81 .
    2. 温青玉,张雨,李天齐,张康逸. 面筋蛋白咸味肽的分离纯化及结构鉴定. 食品科学. 2023(04): 194-199 .
    3. 陈灼娟,柯秀贤,黄霄. 姬松茸抗氧化酶解液的制备. 食品与机械. 2023(03): 183-187+232 .
    4. 刘慧,邢佳浩,范敏,王梦松,潘琳,魏超昆. 羊肉风味基料的工艺优化及风味分析. 肉类研究. 2023(05): 57-65 .
    5. 张修正,梁振鲁,裴继伟,曹燕峰,陈娜,刘海梅,赵芹. 双步酶法制备鱿鱼加工副产物鲜味酶解液的工艺研究. 食品与发酵工业. 2023(15): 201-207 .
    6. 张艳艳,郭朋磊,王文涛,许铭强,张斯琦,张华. 谷朊抗冻多肽对面团冷冻保护作用研究. 中国粮油学报. 2023(08): 176-183 .
    7. 孟智鹏,温青玉,张雨,李天齐,张康逸. 酶解改性对小麦醇溶蛋白致敏性的影响与工艺优化. 河南农业科学. 2022(07): 163-172 .
    8. 刘鹏莉,遇艳萍,王晶,杨爱华,郭丹. 酶解联合美拉德反应制备具有抗氧化活性的扇贝裙边调味基料. 食品安全质量检测学报. 2022(23): 7708-7714 .
    9. 李彤,魏超昆,张惠玲,魏兆军. 枸杞(Lycium barbarum L.)籽饼粕酶解及其美拉德肽盐的开发. 中国食品添加剂. 2022(12): 62-74 .

    Other cited types(7)

Catalog

    Article Metrics

    Article views (190) PDF downloads (21) Cited by(16)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return