LI Xianxiu, HE Tao, YANG Fan, et al. Analysis of Nutritional Components, Functional Components and Bioactivity of Edible Dock[J]. Science and Technology of Food Industry, 2023, 44(3): 307−315. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022040234.
Citation: LI Xianxiu, HE Tao, YANG Fan, et al. Analysis of Nutritional Components, Functional Components and Bioactivity of Edible Dock[J]. Science and Technology of Food Industry, 2023, 44(3): 307−315. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022040234.

Analysis of Nutritional Components, Functional Components and Bioactivity of Edible Dock

More Information
  • Received Date: April 19, 2022
  • Available Online: December 02, 2022
  • In order to explore the development and application of edible dock, the main nutrients and functional components contents were measured, and the antioxidant and hypoglycemic activities were evaluated by measuring the free radical scavenging ability, reducing power and α-glucosidase inhibitory of extract from edible dock. The results showed that the value of total protein reached about 34.70 mg/100 mg (dry weight), the ratios of essential amino acids and medicinal amino acids to total amino acids were respectively 45% and 65%, and the score of amino acid ratio coefficient (SRC) was over 68, indicating that the edible dock was a kind of plant of high nutritional value. The contents of total phenol, total flavonoid and the specific activity of superoxide dismutase were 11.35 mg GAE/g (dry weight), 3.56 mg RE/g (dry weight) and 15.24±3.40 U/mg pro, respectively. Malic acid and oxalic acid were the main organic acid in edible dock (~89.24%). The values corresponding to the extract concentration required to scavenge 50% (IC50) of 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical and 2,2-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) free radical were respectively 0.465 mg/mL and 0.066 mg/mL, and the extract concentration providing reducing power (absorbance) of 0.5 (IC0.5) was about 0.528 mg/mL, which indicated that the edible dock possessed good antioxidant activity. Moreover, the extract of edible dock significantly inhibited α-glucosidase activity in experimental ranges, thus proving its favorable hypoglycemic activity. The above results can enrich the scientific research of edible dock and provide the theoretical foundation for its further development and utilization.
  • [1]
    楼敏涵, 张丽婧, 梅松, 等. 食叶草粉对SD大鼠的致畸性研究[J]. 食品安全质量检测学报,2021,12(3):945−950. [LOU M H, ZHANG L J, MEI S, et al. Study on the teratogenicity of edible dock powder on SD rats[J]. Journal of Food Safety and Quality,2021,12(3):945−950. doi: 10.19812/j.cnki.jfsq11-5956/ts.2021.03.023
    [2]
    陈伟. 食叶草的营养价值及产品开发研究进展[J]. 农产品加工,2018(7):63−64, 67. [CHEN W. Study on nutritional value and development of edible leaf weed and research progress on edible leaf weed products doi: 10.16693/j.cnki.1671-9646(X).2018.07.051

    J]. Farm Products Processing,2018(7):63−64, 67. doi: 10.16693/j.cnki.1671-9646(X).2018.07.051
    [3]
    柏绿山, 杨秀丽. 食叶草(蛋白草)拓展粮食新资源战略意义[J]. 农业开发与装备,2018(9):53,55. [BO L S, YANG X L. Strategic significance of edible leaf weed (protein leaf) to develop new food resources[J]. Agricultural Development & Equipments,2018(9):53,55. doi: 10.3969/j.issn.1673-9205.2018.09.040
    [4]
    植石灿, 李育军, 何潮安, 等. 食叶草蔬菜的高产优质种植及加工研究[J]. 长江蔬菜,2020(4):52−56. [ZHI S C, LI Y J, HE C A, et al. Study on the high output, high quality of edible dock planting and processing[J]. Journal of Changjiang Vegetables,2020(4):52−56.
    [5]
    郑旭, 李斌, 张万银, 等. 垄上栽培对盐碱地食叶草根系生长和产量的影响[J]. 干旱区研究,2020,37(2):470−478. [ZHENG X, LI BIN, ZHANG W Y, et al. Effects of cultivation patterns on the root growth and foliage yield of Rumex hanus by[J]. Arid Zone Research,2020,37(2):470−478.
    [6]
    楼敏涵, 曲雪峰, 张丽婧, 等. 新食品原料食叶草的安全性评估[J]. 食品安全质量检测学报,2021,12(10):3919−3926. [LOU M H, QU X F, ZHANG L J, et al. Safety evaluation of edible dock as a new food raw material[J]. Journal of Food Safety and Quality,2021,12(10):3919−3926.
    [7]
    周昕, 黄秋连, 王健, 等. 添加乳酸菌剂和糖蜜对不同含水量食叶草青贮发酵品质及体外干物质消失率的影响[J]. 动物营养学报,2021,33(3):1594−1606. [ZHOU X, HUANG Q L, WANG J, et al. Effect of adding lactic bacteria and molasses on fermentation quality and in vitro dry matter disappearance rate of Rumex hanus by silage with different moisture contents[J]. Chinese Journal of Animal Nutrition,2021,33(3):1594−1606. doi: 10.3969/j.issn.1006-267x.2021.03.041
    [8]
    程勇杰, 陈小伟, 张沙沙, 等. 柘树植物酵素中氨基酸分析及抗氧化性能研究[J]. 食品工业科技,2018,39(6):1−7,12. [CHENG Y J, CHEN X W, ZHANG S S, et al. Analysis of amino acids and in vitro antioxidant activity of Cudrania tricuspidata Jiaosu[J]. Science and Technology of Food Industry,2018,39(6):1−7,12. doi: 10.13386/j.issn1002-0306.2018.06.001
    [9]
    陈宏靖, 阳丽君, 宋涛. 闽产7种叶菜氨基酸组成分析及营养评价[J]. 海峡预防医学杂志,2021,27(1):8−11. [CHEN H J, YANG L J, SONG T. Analysis on amino acid composition and nutritional evaluation of seven kinds of leaf vegetables in Fujian, China[J]. Strait Journal of Preventive Medicine,2021,27(1):8−11.
    [10]
    魏征, 赵雅娇, 黄羽, 等. 响应面试验优化超声波辅助提取圆叶葡萄鞣花酸和总酚工艺[J]. 食品科学,2015,36(12):29−35. [WEI Z, ZHAO Y J, HUANG Y, et al. Optimization of ultrasound-assisted extraction of ellagic acid and total phenols from muscadine (Vitis rotundifolia) by response surface methodology[J]. Food Science,2015,36(12):29−35. doi: 10.7506/spkx1002-6630-201512006
    [11]
    化洪苓, 尹文哲, 张智, 等. 刺五加发酵茶工艺优化及其抗氧化活性[J]. 食品科学技术学报,2018,36(3):56−65. [HUA H L, YIN W Z, ZHANG Z, et al. Optimization of antimicrobial process of Acanthopanax senticosus fermented tea[J]. Journal of Food Science and Technology,2018,36(3):56−65. doi: 10.3969/j.issn.2095-6002.2018.03.008
    [12]
    王珍珍, 沙如意, 王高坚, 等. HPLC法同时测定食用植物酵素中12种有机酸[J]. 食品工业科技,2020,41(19):279−285. [WANG Z Z, SHA R Y, WANG G J, et al. Simultaneous determination of twelve organic acids in edible plant source Jiaosu by HPLC[J]. Science and Technology of Food Industry,2020,41(19):279−285.
    [13]
    胡水清青, 杜红梅. 10个马齿苋类型的脂肪酸和草酸含量分析[J]. 广西植物,2019,39(11):1550−1557. [HU S Q Q, DU H M. Content analysis of fatty acids and oxalic acid in ten different types of purslane (Portulaca oleracea)[J]. Guihaia,2019,39(11):1550−1557. doi: 10.11931/guihaia.gxzw201810024
    [14]
    范昊安, 沙如意, 方晟, 等. 苹果梨酵素发酵过程中的褐变与抗氧化活性[J]. 食品科学,2020,41(14):116−123. [FAN H A, SHA R Y, FANG S, et al. Browning and antioxidant activity of apple-pear Jiaosu during fermentation[J]. Food Science,2020,41(14):116−123. doi: 10.7506/spkx1002-6630-20190515-151
    [15]
    SU K Y, MAO X L, AI L P, et al. In vitro assessment of anti-diabetic potential of four kinds of dark tea (Camellia sinensis L.) protein hydrolysates[J]. Journal of Applied Botany and Food Quality,2019,92:57−63.
    [16]
    李榕娣, 庄远杯, 魏爱红, 等. 不同蕨菜制品醇提物体外抗氧化及降血糖活性研究[J]. 食品工业科技,2021,42(19):56−63. [LI R D, ZHUANG H Y, WEI A H, et al. Antioxidant and hypoglycemic activities of ethanol extracts from different products of Blechnum orientale L. in vitro[J]. Science and Technology of Food Industry,2021,42(19):56−63. doi: 10.13386/j.issn1002-0306.2020120284
    [17]
    黄渭. 酸模作为黄粉虫饲料的研究[D]. 泰安: 山东农业大学, 2013.

    HUANG W. The research on Rumex acetosa L. as the feed of Tenebrio molitor L.[D]. Taian: Shandong Agricultural University, 2013.
    [18]
    张红, 陈凤鸣, 黄兴国, 等. 构树叶的营养价值及其在动物生产中的应用研究进展[J]. 动物营养学报,2020,32(9):4086−4092. [ZHANG H, CHEN F M, HAUNG X G, et al. Nutritional value of Broussonetia papyrifera leaf and its application in animal production[J]. Chinese Journal of Animal Nutrition,2020,32(9):4086−4092.
    [19]
    刘娜. 齿果酸模主要营养成分分析及营养特性评价[D]. 郑州: 河南农业大学, 2011.

    LIU N. Research on nutrients and nutritional value analysis in Rumex dentatua[D]. Zhengzhou: Henan Agricultural University, 2011.
    [20]
    姜仲茂, 乌云塔娜, 王森, 等. 不同产地野生长柄扁桃仁氨基酸组成及营养价值评价[J]. 食品科学,2016,37(4):77−82. [JIANG Z M, WUYUN T N, WANG S, et al. Amino acid composition and nutritional quality evaluation of wild Amygdalus pedunculatus Pall. Kernels from different growing regions[J]. Food Science,2016,37(4):77−82. doi: 10.7506/spkx1002-6630-201604014
    [21]
    郭如鑫, 王有琼, 张重权, 等. 辣木蛋白质与氨基酸组成分析及营养评价[J]. 云南农业大学学报:自然科学版,2020,35(2):324−331. [GUO R X, WANG Y Q, ZHANG Z Q, et al. Protein and amino acid composition analysis and nutritional evaluation of Moringa oleifera Lam[J]. Journal of Yunnan Agricultural University (Natural Science),2020,35(2):324−331.
    [22]
    王芳, 乔璐, 张庆庆, 等. 桑叶蛋白氨基酸组成分析及营养价值评价[J]. 食品科学,2015(1):225−228. [WANG F, QIAO L, ZHANG Q Q, et al. Amino acid composition and nutritional evaluation of mulberry leaves[J]. Food Science,2015(1):225−228. doi: 10.7506/spkx1002-6630-201501043
    [23]
    丛军. 小麦苗中超氧化物歧化酶(SOD)分离纯化及其抗氧化活性研究[D]. 雅安: 四川农业大学, 2013.

    CONG J. Separation and purification of superoxide dismutase (SOD) and antioxidant activity study from wheat seedings[D]. Yaan: Sichuan Agricultural University, 2013.
    [24]
    ISBILIR S S, SAGIROGLU A. Total phenolic content, antiradical and antioxidant activities of wild and cultivated Rumex acetosella L. extracts[J]. Biological Agriculture and Horticulture,2013,29(4):219−226. doi: 10.1080/01448765.2013.827992
    [25]
    SAVRAN A, ZENGIN G, AKTUMSEK A, et al. Phenolic compounds and biological effects of edible Rumex scutatus and Pseudosempervivum sempervivum: Potential sources of natural agents with health benefits[J]. Food & Function,2016,7:3252−3262.
    [26]
    陈爱萍. 营养酸模超氧化物歧化酶的提纯和理化性质的研究[D]. 乌鲁木齐: 新疆农业大学, 2003.

    CHEN A P. Study on purification and characterization of superoxide dismutase from Rumex K-1 (Rumex patientia×R. tianschanicus cv. Rumex K-1)[D]. Urumqi: Xinjiang Agricultural University, 2003.
    [27]
    谢文明, KO K Y, LEE K S. 土壤和白菜中低分子量有机酸的气相色谱分析[J]. 岩矿测试,2009,28(2):97−100. [XIE W M, KO K Y, LEE K S. Determination of low molecular weight organic acids in soils and cabbages by gas chromatography[J]. Rock and Mneral Analysis,2009,28(2):97−100. doi: 10.3969/j.issn.0254-5357.2009.02.002
    [28]
    刘晓霞. 氮营养对不同菠菜基因型草酸积累的影响及其机理研究[D]. 杭州: 浙江大学, 2014.

    LIU X X. Effect of nitrogen nutrition on oxalate accumulation in different spinach genotypes and corresponding mechnism[D]. Hangzhou: Zhejiang University, 2014.
    [29]
    BEDDOU F, BEKHECHI C, KSOURI R, et al. Potential assessment of Rumex vesicarius L. as a source of natural antioxidants and bioactive compounds[J]. Journal of Food Science & Technology,2014,52(6):3549−3560.
    [30]
    KILIC I, YESILOGLU Y, BAYRAK Y, et al. Antioxidant activity of Rumex conglomeratus P. collected from Turkey[J]. Asian Journal of Chemistry,2013,25(17):9683−9687. doi: 10.14233/ajchem.2013.15130
    [31]
    CHELLY M, CHELLY S, SALAH H B, et al. Characterization, antioxidant and protective effects of edible Rumex roseus on erythrocyte oxidative damage induced by methomyl[J]. Journal of Food Measurement and Characterization,2020,14:229−243. doi: 10.1007/s11694-019-00285-3
    [32]
    YAO X H, ZHANG D Y, ZU Y G, et al. Free radical scavenging capability, antioxidant activity and chemical constituents of Pyrola incarnata Fisch. leaves[J]. Industrial Crops & Products,2013,49:247−255.
    [33]
    VALENCIA-MEJIA E, BATISTA K A, FERNANDEZ J, et al. Antihyperglycemic and hypoglycemic activity of naturally occurring peptides and protein hydrolysates from easy-to-cook and hard-to-cook beans (Phaseolus vulgaris L.)[J]. Food Research International,2019,121:238−246. doi: 10.1016/j.foodres.2019.03.043
    [34]
    REDDY N S, SABBANI V, CHODAY V. In vitro and in vivo antidiabetic activity of Rumex vesicarius leaves extract in streptozotocin induced diabetic albino wister rats[J]. Journal of Diabetes & Metabolism,2017,8(6):1−4.
    [35]
    吴玥霖, 魏然, 曾里, 等. 四种天然产物对α-葡萄糖苷酶抑制作用的研究[J]. 食品工业科技,2010(9):130−131,134. [WU Y L, WEI R, ZENG L, et al. Inhibition of 4 kinds of natural products on α-glucosidase[J]. Science and Technology of Food Industry,2010(9):130−131,134.
    [36]
    代君君, 吴传华, 肖林珍, 等. 桑树不同组织的水提物对α-葡萄糖苷酶的抑制作用研究[J]. 中国农学通报,2011,27(5):466−469. [DAI J J, WU C H, XIAO L Z, et al. Study on the inhibiting effects of the aqueous extract from different mulberry organizations on the α-glucosidase[J]. Chinese Agricultural Science Bulletin,2011,27(5):466−469.
    [37]
    杨新河, 黄建安, 刘仲华, 等. 普洱茶对α-葡萄糖苷酶活性影响的研究[J]. 食品工业科技,2012,33(12):122−124. [YANG X H, HUANG J A, LIU Z H, et al. Effect of Pu Erh tea on the activity of α-glucosidase[J]. Science and Technology of Food Industry,2012,33(12):122−124.
  • Cited by

    Periodical cited type(9)

    1. 张潇,李波,聂远洋,贾洋洋,秦令祥,周海旭. 二段式超声辅助沸水提取香菇多糖工艺研究. 中国果菜. 2024(07): 29-33 .
    2. 唐慧芳. 甘薯生物活性成分及保健功效研究进展. 南方农业. 2024(15): 116-120 .
    3. 董伟,马生健,马文欣,罗艺婷,吴彩艳,李佳悦,陆静恩,杨桂容. 凉粉草多糖的理化性质及其体外抗氧化活性. 食品研究与开发. 2023(09): 52-58 .
    4. 曹心亭,毕海心,孙媛,王海波,赵前程,李智博. 加工方式对贝柱模拟消化产物中多糖结构和抗氧化活性的影响. 中国食品添加剂. 2023(05): 88-95 .
    5. 杜晗笑,冉军舰,孙俊良,邓艳文,李瑞雪,庞帅. 鼠李糖乳杆菌zrx01冻干菌粉的制备及工艺优化. 河南科技学院学报(自然科学版). 2023(06): 14-25 .
    6. 李思雨,刘红全,孙寒,徐琰杰,黄磊恒,龙寒,凌宏林,成江弈,杨堃峰. 小球藻胞内多糖提取纯化及其抗氧化活性. 食品工业科技. 2022(15): 209-219 . 本站查看
    7. 钱燕芳,石晨莹,陈贵堂. 桑葚多糖超声提取、脱色工艺优化及其抗氧化活性分析. 食品工业科技. 2022(16): 201-210 . 本站查看
    8. 王博,陈美琼,郭翔宇,杨诗琪,曹权富,张俊杰,朱梅. 马齿苋多糖提取优化及抗氧化活性研究. 北华大学学报(自然科学版). 2022(04): 471-477 .
    9. 董伟,马生健,郭俊先,罗皓,陶美华. 凉粉草多糖提取、结构特征和生物活性研究. 食品与机械. 2022(11): 168-175 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (321) PDF downloads (60) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return