LIU Xu, MENG Jikun, GE Xinhui, et al. Properties of Polysaccharides from Polygonatum sibiricum Extracted with Deep Eutectic Solvents[J]. Science and Technology of Food Industry, 2022, 43(11): 52−57. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021080114.
Citation: LIU Xu, MENG Jikun, GE Xinhui, et al. Properties of Polysaccharides from Polygonatum sibiricum Extracted with Deep Eutectic Solvents[J]. Science and Technology of Food Industry, 2022, 43(11): 52−57. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021080114.

Properties of Polysaccharides from Polygonatum sibiricum Extracted with Deep Eutectic Solvents

More Information
  • Received Date: August 10, 2021
  • Available Online: March 29, 2022
  • In order to understand the effect of deep eutectic solvents (DESs) extraction conditions on the properties changes and antioxidant activity in vitro of Polygonatum sibiricum polysaccharides (PSP), Polygonatum sibiricum was taken as the main raw material, and the relative molecular weight, monosaccharide composition and antioxidant activities of polysaccharides extracted with DESs were analyzed. The results showed that compared with the traditional water extraction method, the yield of polysaccharides extracted by 70 ℃ DESs was 18%, which was 36% higher than that by traditional water extraction. The molecular weight of PSP decreased and the galactose content increased; the molecular weight of HDPSP which extracted at 100 ℃ was lower, and the main component was glucose. The scavenging rates of hydroxyl free radical and DPPH free radical and the total antioxidant capacity of Polygonatum sibiricum polysaccharide showed that the antioxidant capacity of Polygonatum sibiricum polysaccharide extracted with DESs at 70 ℃ was significantly higher than that of polysaccharide extracted at 100 ℃ and water extraction. When the concentration was 3.0 mg/mL, the total antioxidant capacity of polysaccharides extracted at 70 ℃ was 4.5 U/mL, 4.3 times that of water-extracted polysaccharides, and 7.4 times that of polysaccharides extracted at 100 ℃. Deep eutectic solvent can reduce molecular weight and improve antioxidant activity of Polygonatum sibiricum polysaccharide. The results can provide reference for the application of deep eutectic solvent in polysaccharide extraction.
  • [1]
    ZHAO P, ZHAO C, LI X, et al. The genus polygonatum: A review of ethnopharmacology, phytochemistry and pharmacology[J]. Journal of Ethnopharmacol,2018,214:274−291.
    [2]
    王艳, 董鹏, 金晨钟, 等. 黄精多糖组成及其抗氧化活性分析[J]. 基因组学与应用生物学,2019,38(5):2191−2199. [WANG Y, DONG P, JIN C Z, et al. Analysis on composition of Polygonatum sibiricum polysaccharide and its anti-oxidant activity[J]. Genomics and Applied Biology,2019,38(5):2191−2199.
    [3]
    苏伟, 赵利, 刘建涛, 等. 黄精多糖抑菌及抗氧化性能研究[J]. 食品科学,2007,28(8):55−57. [SU W, ZHAO L, LIU J T, et al. Study on bacteriostasis and anti-oxidation of Polyonatic sibiricum polysacchaides[J]. Food Science,2007,28(8):55−57. doi: 10.3321/j.issn:1002-6630.2007.08.007
    [4]
    张静, 张艳贞, 陈文, 等. 四产地黄精中多糖含量及抗氧化活性比较[J]. 食品工业科技,2013,34(2):147−148. [ZHANG J, ZHANG Y Z, CHEN W, et al. Comparison of polysaccharide content and anti-oxidation activity in Polygonatum from four different regions[J]. Science and Technology of Food Industry,2013,34(2):147−148.
    [5]
    WANG Y, QIN S C, PEN G Q, et al. Potential ocular protection and dynamic observation of Polygonatum sibiricum polysaccharide against streptozocin-induced diabetic rats model[J]. Experimental Biology & Medicine,2016,242(1):92−101.
    [6]
    CAI J, ZHU Y, ZUO Y, et al. Polygonatum sibiricum polysaccharide alleviates inflammatory cytokines and promotes glucose uptake in highglucose and highinsulininduced 3T3L1 adipocytes by promoting Nrf2 expression[J]. Molecular Medicine Reports,2019,20(4):3951−3958.
    [7]
    YANG J X, WU S, HUANG X L, et al. Hypolipidemic activity and antiatherosclerotic effect of polysaccharide of Polygonatum sibiricum in rabbit model and related cellular mechanisms[J]. Evid Based Complement Alternat Med,2015,2015:391065.
    [8]
    CHEN Z, LIU J, KONG X, et al. Characterization and immunological activities of polysaccharides from Polygonatum sibiricum[J]. Biological & Pharmaceutical Bulletin,2020,43(6):959−967.
    [9]
    SHU G, XU D, ZHAO J, et al. Protective effect of Polygonatum sibiricum polysaccharide on cyclophosphamide-induced immunosuppression in chickens[J]. Research in Veterinary Science,2021,135:96−105.
    [10]
    ZHENG S. Protective effect of Polygonatum sibiricum polysaccharide on D-galactose-induced aging rats model[J]. Scientific Reports,2020,10(1):2246.
    [11]
    李利芬, 余丽萍, 梁坚坤, 等. 低共熔溶剂提取植物活性成分的研究进展[J]. 粮食与油脂,2020,287(3):12−15. [LI L F, YU L P, LIANG J K, et al. Research progress on extraction of plamt active components by deep eutectic solvents[J]. Cereals & Oils,2020,287(3):12−15.
    [12]
    司马国宝, 王帅, 崔莹, 等. 低共熔溶剂对木质纤维素分离及木质素提取的研究进展[J]. 现代化工,2019,39(9):26−30. [SIMA G B, WANG S, CUI Y, et al. Research progress in lignocellulose separation and lignin extraction by deep eutectic solvents[J]. Modern Chemical Industry,2019,39(9):26−30.
    [13]
    MBOUS Y P, HAYYAN M, HAYYAN A, et al. Applications of deep eutectic solvents in biotechnology and bioengineering-Promises and challenges[J]. Biotechnology Advances,2017,35(2):105−134.
    [14]
    都宏霞, 缪领珍, 胡梓恒, 等. 低共熔溶剂提取桂花黄酮的工艺优化[J]. 现代食品科技,2021,37(5):9. [DU H X, LIAO L Z, HU Z H, et al. Optimizing the extraction of flavonoids from Osmanthus fragrans using deep eutectic solvents[J]. Modern Food Science & Technology,2021,37(5):9.
    [15]
    李霄, 薛成虎, 高立国, 等. 芹菜叶中芹菜素的提取工艺优化及其体外抗氧化性研究[J]. 当代化工,2017,46(7):1293−1298. [LI X, XUE C H, GAO L G, et al. Optimization of extraction process of apigenin in celery leaves and its antioxidant activity in vitro[J]. Contemporary Chemical Industry,2017,46(7):1293−1298. doi: 10.3969/j.issn.1671-0460.2017.07.005
    [16]
    CRONIN D J, CHEN X, MOGHODDAM L, et al. Deep eutectic solvent extraction of high-purity lignin from a corn stover hydrolysate[J]. ChemSusChem,2020,13(17):4678−4690.
    [17]
    ZHANG Q, KARINE D O V, ROYER S, et al. Deep eutectic solvents: Syntheses, properties and applications[J]. Chemical Society Reviews,2012,41(21):7108−7146.
    [18]
    汪涛, 周新群, 孙君社, 等. 低共熔溶剂提取黄精多糖工艺优化及抗氧化活性研究[J]. 食品科学技术学报,2020,158(6):115−124. [WANG T, ZHOU X Q, SUN J S, et al. Study on optimal process and antioxidant activity of Polygonatum sibiricum polysaccharides extracted by deep eutectic solvents[J]. Journal of Food Science and Technology,2020,158(6):115−124.
    [19]
    DUBOIS M, GILLES K A, HAMILTON J K, et al. Colorimetric method for determination of sugars and related substances[J]. Analytical Chemistry,1956,28(3):350−356.
    [20]
    黄小兰, 周祥德, 杨勤, 等. 不同产地地参中总糖, 可溶性多糖和还原糖含量的比较分析[J]. 中国野生植物资源,2020,39(6):23−27. [HUANG X L, ZHOU X D, YANG Q, et al. Content comparative analysis of total sugar, soluble polysaccharide and reducing sugar in Lycopus lucidus var. hirtus Regel from different habitats[J]. Chinese Wild Plant Resources,2020,39(6):23−27.
    [21]
    黄奕诚, 陈雪香, 贺丽苹, 等. 蛹虫草多糖的纯化及其分子量的测定[J]. 现代食品科技,2012,28(8):1054−1057. [HUANG Y C, CHEN X X, HE L P, et al. Isolation, purification and molecular weight determination of polysaccharides from Cordyceps militaris[J]. Modern Food Science & Technology,2012,28(8):1054−1057.
    [22]
    周彦强, 吴光斌, 陈发河. PMP柱前衍生化HPLC法测定黄秋葵多糖的单糖组成[J]. 食品科学,2019,40(4):276−281. [ZHOU Y Q, WU G B, CHEN F H. Analysis of monosaccharide composition of polysaccharides from okra by pre-column derivatization high performance liquid chromatography[J]. Food Science,2019,40(4):276−281.
    [23]
    张璐,杨莹莹. 高效液相色谱法测定党参多糖的单糖组成及含量[J]. 中国食品添加剂,2021,32(12):163−169. [ZHANG L, YANG Y Y. Determination of monosaccharide composition and content of Codonopsis pilosula polysaccharide by HPLC[J]. China Food Additives,2021,32(12):163−169.
    [24]
    WANG Y F, JIA J, REN X, et al. Extraction, preliminary characterization and in vitro antioxidant activity of polysaccharides from Oudemansiella radicata mushroom[J]. International Journal of Biological Macromolecules,2018,120(B):1760−1769.
    [25]
    LING C, HUANG G. Extraction, characterization and antioxidant activities of pumpkin polysaccharide[J]. International Journal of Biological Macromolecules,2018,118(A):770−774.
    [26]
    张成武. 低共熔溶剂预处理木质纤维素的研究[D]. 天津: 天津大学, 2016.

    ZHANG C W. Study on pretreatment of lignocellulose with low eutectic solvent[D]. Tianjin: Tianjin University, 2016.
    [27]
    武晓琳, 常耀光, 王静凤, 等. 不同分子量海参岩藻聚糖硫酸酯的制备及消化吸收特性的初步研究[J]. 中国海洋药物,2011,30(3):20−24. [WU X L, CHANG Y G, WANG J F, et al. Preparation of different molecular weights of sea cucumber fucoidan and study on their absorptive characteristics in rats[J]. Chinese Journal of Marine Drugs,2011,30(3):20−24.
    [28]
    WANG Y, LIU N, XUE X, et al. Purification, structural characterization and in vivo immunoregulatory activity of a novel polysaccharide from Polygonatum sibiricum[J]. International Journal of Biological Macromolecules,2020,160:688−694.
    [29]
    黄秀红, 刘丽辰, 阮怿航, 等. 响应面优化低共熔溶剂提取乌龙茶多糖的研究[J]. 食品研究与开发,2020,41(11):96−103. [HUANG X H, LIU L C, RUAN Y H, et al. Optimization of deep eutectic solvents extraction of polysaccharides from Oolong tea by response surface methodology[J]. Food Research and Development,2020,41(11):96−103.
    [30]
    SHANG X C, CHU D, ZHANG J X, et al. Microwave-assisted extraction, partial purification and biological activity in vitro of polysaccharides from bladder-wrack (Fucus vesiculosus) by using deep eutectic solvents[J]. Separation and Purification Technology,2020,259(1):118169.
  • Related Articles

    [1]DUAN Xiaolin, FAN Yan, WANG Jinlin, JIANG Xiaoming, XU Xinxing, ZHANG Xuqing, LIU Li, LIU Kang, ZHAO Yuanhui. Isolation, Identification and Antimicrobial Activity Analysis of Antimicrobial Peptides from Epidermis Mucus of Sturgeon[J]. Science and Technology of Food Industry, 2023, 44(18): 67-75. DOI: 10.13386/j.issn1002-0306.2022110148
    [2]ZHANG Qiao, NONG Jian-biao, NONG Jin-huan, DUAN Zhen-hua. Isolation,Identification and Antimicrobial Activity of Antagonistic Bacteria from Eleocharis dulcis(Burm.f.)Trin. ex Hensch.Surface[J]. Science and Technology of Food Industry, 2020, 41(10): 107-111,117. DOI: 10.13386/j.issn1002-0306.2020.10.018
    [3]ZHU Jian-ning, CAO Lei, WEN Peng-cheng, YANG Min, WANG Yue, ZHANG Zhong-ming, ZHANG Wei-bing. Comparison of Tolerance and Antibacterial Activity of Lactic Acid Bacteria from Yak Qula[J]. Science and Technology of Food Industry, 2020, 41(7): 115-120,125. DOI: 10.13386/j.issn1002-0306.2020.07.020
    [4]JIN Ruo-zhou, LI Fei-fan, ZENG yuan-yuan, PAN Sai-chao, MEI Xiao-hong. Optimization of Extraction Process of Phytosterol from Chickpea and Its Antimicrobial Activity[J]. Science and Technology of Food Industry, 2019, 40(24): 172-177,184. DOI: 10.13386/j.issn1002-0306.2019.24.028
    [5]WANG Hui, ZENG Xiao-fang, FENG Wei-hua, YU Li-mei, ZHAI Wan-jing, BAI Wei-dong, ZENG Ling-gang. Antimicrobial Activity and Mechanism of Limonoids from Lemon Peel against Rhizopus[J]. Science and Technology of Food Industry, 2019, 40(8): 102-107. DOI: 10.13386/j.issn1002-0306.2019.08.018
    [6]SUN Jun-liang, DU Han-mei, LIANG Xin-hong, RAN Jun-jian, CHANG Guan-hong, YU Xin-ling. Antimicrobial Activity of Dehydroepiandrosterone in Sweet Potato Residue[J]. Science and Technology of Food Industry, 2018, 39(22): 6-11,16. DOI: 10.13386/j.issn1002-0306.2018.22.002
    [7]ZHANG Hong-mei, FU Dan-dan, ZHAO Jun-feng, WANG Da-hong, LI Shi-chang, ZHANG Min. Screening of Bacillus with Antimicrobial Activity from Pickles and Physicochemical Characteristics of Bacteriocin[J]. Science and Technology of Food Industry, 2018, 39(14): 110-114,119. DOI: 10.13386/j.issn1002-0306.2018.14.020
    [8]LI Ya-ru, ZHOU Lin-yan, LI Shu-rong, CAO Zhen-zhen, ZHANG Le, WEI Ming, NIE Ying, TANG Xuan-ming. Study on antimicrobial activity of essential oils of dried apricots[J]. Science and Technology of Food Industry, 2014, (20): 137-141. DOI: 10.13386/j.issn1002-0306.2014.20.021
    [9]HUANG Xiao-min, YU Xin, HUANG Jie. Antimicrobial activities of flavonoids from Pinus massoniana needles on food spoilage bacteria[J]. Science and Technology of Food Industry, 2014, (15): 67-71. DOI: 10.13386/j.issn1002-0306.2014.15.005
    [10]HUANG Zhi-ying, LEI Qiao, BAO Jian-qiang, XUN Qian-nan, ZHANG Yu-ting. Study on packaging performance and antimicrobial properties of antibacterial composite protein films[J]. Science and Technology of Food Industry, 2014, (06): 288-291. DOI: 10.13386/j.issn1002-0306.2014.06.053
  • Cited by

    Periodical cited type(3)

    1. 胡嘉宁,钟普鹏,杨培川,赵瑞利,秦顺义,孙英峰,马吉飞. 耐甲氧西林葡萄球菌牛乳分离株耐药特征和分型研究. 黑龙江畜牧兽医. 2022(01): 82-91+136-137 .
    2. 侯忠余,李传友,朱成林,于基成,唐俊妮. 1株金黄色葡萄球菌烈性噬菌体的生物学特性及其裂解效果. 食品科学. 2022(08): 113-120 .
    3. 张鹏飞,阮傅倩,徐旭,李佳瑶,侯乐乐,常冠红,王晔茹,王新. 陕西省和上海市市售猪肉中金黄色葡萄球菌分子多样性及耐药性研究. 食品安全质量检测学报. 2022(10): 3123-3133 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (259) PDF downloads (35) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return