TAN Jianlin, PENG Zhenhua, ZHAO Xiulin, et al. Determination of 19 Carbamate Pesticide and Metabolites Residues in Eggs by QuEChERS-UPLC-MS/MS[J]. Science and Technology of Food Industry, 2022, 43(1): 320−325. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021030261.
Citation: TAN Jianlin, PENG Zhenhua, ZHAO Xiulin, et al. Determination of 19 Carbamate Pesticide and Metabolites Residues in Eggs by QuEChERS-UPLC-MS/MS[J]. Science and Technology of Food Industry, 2022, 43(1): 320−325. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021030261.

Determination of 19 Carbamate Pesticide and Metabolites Residues in Eggs by QuEChERS-UPLC-MS/MS

More Information
  • Received Date: March 21, 2021
  • Available Online: October 27, 2021
  • The residues of 19 carbamate pesticides and their metabolites in eggs were determined by QuEChERS-UPLC-MS/MS. Egg samples were extracted by acetonitrile, purified by dispersion solid phase extraction, and determined by UPLC-MS/MS. The linearity of 19 carbamate pesticides and their metabolites in the range of 0.2~50 ng/mL was good (R2>0.999), and the detection limit of the method was 1.0~10 μg/kg. The recoveries were 69.3%~107.6 % and RSD was lower than 9.21% at 10, 20 and 50 μg/kg. The method is simple, rapid, efficient and accurate with high recovery, and can meet the needs of detection and confirmation of 19 carbamate pesticides and their metabolites residues in eggs.
  • [1]
    郑桂玲, 孙家隆. 现代农药应用技术丛书: 杀虫剂卷[M]. 北京: 化学工业出版, 2014.

    ZHENG G L, SUN J L. Series of modern pesticide application technology: Insecticide roll[M]. Beijing: Chemical Industry Publishing, 2014.
    [2]
    LI J K, ZHOU Y L, WEN Y X, et al. Studies on the purification and characterization of soybean esterase, and its sensitivity to organophosphate and carbamate pesticides[J]. Journal of Integrative Agriculture,2009,8(4):455−463.
    [3]
    NPADHY R, RATH S, BOTANY D O. Probit analysis of carbamate-pesticide-toxicity at soil-water interface to N2-Fixing cyanobacterium Cylindrospermum sp.[J]. Rice Sci,2015,22(2):89−98. doi: 10.1016/j.rsci.2015.05.012
    [4]
    EC/396/2005 on maximum residue levels of pesticides in or on food and feed of plant and animal origin[S].
    [5]
    GB 2763-2019 食品安全国家标准 食品中农药最大残留限量[S].

    GB 2763-2019 National food safety standards Maximum residue limits of pesticides in food[S].
    [6]
    GB/T 5009.199-2003 蔬菜中有机磷和氨基甲酸酯类农药残留量的快速检测[S].

    GB/T 5009.199-2003 Rapid determination of organophosphorus and carbamate pesticide residues in vegetables[S].
    [7]
    郑斌, 黎其万, 邵金良, 等. 温度对酶抑制法测定蔬菜有机磷和氨基甲酸酯类农药残留量的影响[J]. 广东农业科学,2012,39(3):108−109. [ZHENG B, LI Q W, SHAO J L, et al. Study on the influence of temperature on determination of organophosphorus and carbamate pesticide residues in vegetable by enzyme inhibition methods[J]. Guangdong Agric Sci,2012,39(3):108−109. doi: 10.3969/j.issn.1004-874X.2012.03.036
    [8]
    GB 23200.112-2018 食品安全国家标准 植物源性食品中9种氨基甲酸酯类农药及其代谢物残留量的测定 液相色谱-柱后衍生法[S].

    GB 23200.112-2018 National food safety standards Determination of 9 carbamate pesticides and their metabolites residues in food of plant derived liquid chromatography-post-column derivatization method[S].
    [9]
    NY/T 761-2008 蔬菜和水果中有机磷、有机氯、拟除虫菊酯和氨基甲酸酯类农药多残留的测定[S].

    NY/T 761-2008 Pesticide multiresidue screen methods for determination of organophosphorus pesticides, organochlorine pesticides, pyrethroid pesticides and carbamate pesticedes in vegetables and fruits[S].
    [10]
    洪波, 万译文, 刘伶俐, 等. 高效液相色谱法同时测定水产品中氨基甲酸酯类的残留[J]. 食品与机械,2012,28(6):92−95. [HONG B, WAN Y W, LIU L L, et al. Determ ination of N-methylcarbamat insecticides in aquaculture the simultaneous by HPLC[J]. Food Mach,2012,28(6):92−95.
    [11]
    GB/T 19373-2003 饲料中氨基甲酸酯类农药残留量测定 气相色谱法[S].

    GB/T 19373-2003 Determination of carbamate pesticide residues in feed gas chromatography [S].
    [12]
    李小燕, 李敬波. 气相色谱法同时检测农产品中有机磷类、有机氮类和氨基甲酸酯类农药残留技术的研究[J]. 现代食品,2020,11(22):186−189. [LI X Y, LI J B. Research on simultaneous detection of organic phosphorus, organic nitrogen and carbamate pesticide residues in agricultural products by gas chromatography[J]. Modern Food,2020,11(22):186−189.
    [13]
    BERNARDI G, KEMMERICH M, RIBEIRO L C, et al. An effective method for pesticide residues determination in tobacco by GC-MS/MS and UHPLC-MS/MS employing acetonitrile extraction with low-temperature precipitation and d-SPE clean-up[J]. Talanta,2016,161:40−47. doi: 10.1016/j.talanta.2016.08.015
    [14]
    余宇成, 方灵, 苏德森, 等. 气相色谱-串联质谱法测定乌龙茶中5种氨基甲酸酯类农药[J]. 分析测试学报,2016,35(12):1586−1590. [YU Y C, FANG L, SU D S, et al. Determination of five carbamate pesticidesresidues in oolong tea by gas chromatography-tandem mass spectrometry[J]. J Instrum Anal,2016,35(12):1586−1590. doi: 10.3969/j.issn.1004-4957.2016.12.012
    [15]
    GB 23200.90-2016 食品安全国家标准 乳及乳制品中多种氨基甲酸酯类农药残留量的测定 液相色谱-质谱法[S].

    GB 23200.90-2016 National food safety standards Determination of multiple carbamate pesticide residues in milk and dairy products Liquid chromatography-mass spectrometry[S].
    [16]
    ZHOU Y, GUAN J, GAO W W, et al. Quantification and confirmation of fifteen carbamate pesticide residues by multiple reaction monitoring and enhanced product ion scan modes via LC-MS/MS QTRAP system[J]. Molecules,2018,23(10):2481−2496. doi: 10.3390/molecules23102481
    [17]
    杨坤, 张建炀, 周斌. QuEChERS前处理结合超高液相色谱-串联质谱法定高硫蔬菜中16种氨基甲酸酯类农药残留[J]. 理化检验-化学分册,2021,57(1):45−51. [YANG K, ZHANG J T, ZHOU B. Determination of 16 carbamate pesticide residues in high-sulfur vegetables by UHPLC-MS/MS after preparation of sample with QuEChERS[J]. Physical Testing and Chemical Analysis Part B:Chemical Analysis,2021,57(1):45−51.
    [18]
    SHI Z H, LI Q, XU D, et al. Graphene-based pipette tip solid-phase extraction with ultra-high performance liquid chromatography and tandem mass spectrometry for the analysis of carbamate pesticide residues in fruit juice[J]. Journal of Separation Science,2016,39(22):4391−4397. doi: 10.1002/jssc.201600498
    [19]
    ROBERTA S S, NAVICKIENE S. Multiresidue determination of carbamate, organophosphate, neonicotinoid, and triazole pesticides in roasted coffee using ultrasonic solvent extraction and liquid chromatography-tandem mass spectrometry[J]. Journal of AOAC International,2019,102(1):33−37. doi: 10.5740/jaoacint.18-0294
    [20]
    任彦, 暨佩娟. 欧洲“毒鸡蛋”风波持续发酵[N]. 人民日报, 2017-08-14(021).

    REN Y, JI P J. European "poisonous egg" storm continues to ferment[N]. People's Daily, 2017-08-14(021).
    [21]
    段税优, 卢专, 杨昌彪, 等. QuEChERS结合GC-MS法测定新鲜鸡蛋中15种农药残留[J]. 现代食品,2019,14(40):123−128. [DUAN S Y, LU Z, YANG C B, et al. Determination of 15 pesticide residues in fresh eggs by QuEChERS combined with GC-MS[J]. Modern Food,2019,14(40):123−128.
    [22]
    郝杰, 邵瑞婷, 姜洁, 等. QuEChERS-超高效液相色谱-串联质谱法测定鸡蛋、鸡肉中氟虫腈及其代谢物残留[J]. 食品科学,2019,40(2):326−331. [HAO J, SHAO R T, JIANG J, et al. Determination of fipronil and its metabolites residues in chicken meat and eggs by QuEChERS-ultra performance liquid chromatography-tandem mass spectrometry[J]. Food Science,2019,40(2):326−331.
    [23]
    郭德华, 时逸吟, 李优, 等. 固相萃取-液相色谱-四极杆飞行时间质谱法快速筛查禽蛋及蛋制品中氟虫腈及其代谢物[J]. 色谱,2017(12):17−24. [GUO D H, SHI Y Y, LI Y, et al. Rapid screening of fipronil and its metabolites in egg and egg products by solid phase extraction-liquid chromatography-quadrupole time-of-flight mass spectrometry[J]. Chinese Journal of Chromatography,2017(12):17−24.
    [24]
    GB 23200.115-2018 食品安全国家标准 鸡蛋中氟虫腈及其代谢物残留量的测定 液相色谱-质谱联用法[S].

    GB 23200.115-2018 National food safety standards Determination of fipronil and its metabolite residues in eggs Liquid chromatography mass spectrometry[S].
    [25]
    吴定芳, 王磊, 何茫茫, 等. 高效液相色谱法测定蔬菜中19种氨基甲酸酯类农药的残留量[J]. 理化检验(化学分册),2020,56(2):142−147. [WU D F, WANG L, HE M M, et al. HPLC Determination of residual amounts of 19 carbamate pesticides in vegetables[J]. Physical Testing and Chemical Analysis Part B:Chemical Analysis,2020,56(2):142−147.
    [26]
    何华丽, 徐小民, 吕美玲, 等. 液相色谱-串联质谱法测定生姜中的氨基甲酸酯类农药及其代谢物残留[J]. 分析测试学报,2014,33(2):197−202. [HE H L, XU X M, LV M L, et al. Determination of residues of carbamates and their metabolites in ginger by liquid chromatography-tandem mass spectrometry[J]. Journal of Instrumental Analysis,2014,33(2):197−202. doi: 10.3969/j.issn.1004-4957.2014.02.014
    [27]
    刘华文, 苏海雁, 陆小康, 等. QuEChERS/超高效液相色谱-串联质谱法测定茶叶中28种农药残留[J]. 食品工业科技,2021,42(2):223−229. [LIU H W, SU H Y, LU X K, et al. Determination of 28 kinds of pesticide residues in tea by QuEChERS/ultra performance liquid chromatography-tandem mass spectrometry[J]. Science and Technology of Food Industry,2021,42(2):223−229.
    [28]
    PUCCI V, PALMA S D, ALFIERI A, et al. A novel strategy for reducing phospholipids-based matrix effect in LC-ESI-MS bioanalysis by means of Hybrid-SPE[J]. Journal of Pharmaceutical and Biomedical Analysis,2009,50(5):867−871. doi: 10.1016/j.jpba.2009.05.037
    [29]
    KMELLÁR B, FODOR P, PAREJA L, et al. Validation and uncertainty study of a comprehensive list of 160 pesticide residues in multi-class vegetables by liquid chromatography-tandem mass spectrometry[J]. Journal of Chromatography A,2008,1215(1/2):37−50.
    [30]
    宾婕, 王以鑫, 胡建林,等. QuEChERS-UPLC-MS/MS 法快速测定香茅草中33种农药残留量[J]. 药物分析杂志,2021,41(3):471−479. [BIN J, WANG Y X, HU J L, et al. Determination of 33 pesticide residues in cymbopogon citratus by modified QuEChERS method and UPLC-MS/MS[J]. Chin J Pharm Anal,2021,41(3):471−479.
  • Related Articles

    [1]TU Lingfei, LI Yan, ZHANG Zhen. Optimization of Selenized Bletilla striata Polysaccharides Preparation by Response Surface Methodology and Determination of the Antioxidant Activity in Vitro[J]. Science and Technology of Food Industry, 2024, 45(7): 244-253. DOI: 10.13386/j.issn1002-0306.2023060295
    [2]MA Xiaoxiao, WANG Bing, LIU Huiping, ZHANG Xin, ZHANG Huihui, LI Can, LIU Ying. Optimization of Sulfation Process of Zizania latifolia Polysaccharide by Response Surface and Its Antioxidant Activity Analysis[J]. Science and Technology of Food Industry, 2024, 45(7): 25-34. DOI: 10.13386/j.issn1002-0306.2023080092
    [3]SHI Youhang, LÜ Qingyao, JIAO Shirong. Optimization of Microwave-assisted Extraction Process of Anthraquinones from Aloe vera by Response Surface Method and Analysis of Its Antioxidant Activity[J]. Science and Technology of Food Industry, 2023, 44(19): 174-181. DOI: 10.13386/j.issn1002-0306.2022100192
    [4]Sha RAN, Fusheng ZHANG, Bin LI, Jinlai YANG, Liangru WU, Jiong ZHENG. Extraction Optimization and Antioxidant Activity of Bound Polyphenols in Bamboo Shoot Dietary Fiber[J]. Science and Technology of Food Industry, 2023, 44(13): 233-241. DOI: 10.13386/j.issn1002-0306.2022090198
    [5]Liming ZHAO, Xuyao GUO, Yingmin MAO, Daqing ZHAO, Baotai HUANG, Jiaqi LI, Li LIU, Bin QI. Optimization of Extraction Process and Antioxidant Activity of Polysaccharide from Panax quinquefolium Fruit by Response Surface Methodology[J]. Science and Technology of Food Industry, 2023, 44(13): 160-166. DOI: 10.13386/j.issn1002-0306.2022070318
    [6]TIAN Zhuxi, DAI Mengling, LI Yongfu, LONG Mingxiu, LIANG Qian, LUO Qiqi. Optimization of Enzymatic Transformation Process for Different Forms of Polyphenols from Blueberry Pulp and Its Antioxidant Activity Analysis[J]. Science and Technology of Food Industry, 2023, 44(9): 207-215. DOI: 10.13386/j.issn1002-0306.2022070339
    [7]WANG Yihe, XIA Yanli, ZHANG Xin, YANG Hang, MEI Guofu, YU Bo, YI Jianming, XUE Huiling. Optimization of Extraction Process of Essential Oil from Bergamot Peel and Analysis of Its Components and Antioxidant Activity[J]. Science and Technology of Food Industry, 2023, 44(3): 230-239. DOI: 10.13386/j.issn1002-0306.2022060055
    [8]HUANG Yu, LIU Weihong, WANG Hongyang, ZHU Qianer, LANG Xiaoxiao, WANG Wei, CHEN Shenglong, YU Hui. Optimization of Bionic Enzymatic Hydrolysis of Undaria pinnatifida sporophyll and Antioxidant Activity Analysis of Its Hydrolysate Peptides[J]. Science and Technology of Food Industry, 2022, 43(13): 180-189. DOI: 10.13386/j.issn1002-0306.2021100073
    [9]LI Jingfeng, ZHI Hui, YANG Xiaoqian, GAO Xu, ZHANG Hui, SUN Jiaming. Optimization of Extraction Process from Tortoise Shell Protein by Response Surface Methodology and Its Proliferation Activity on MC3T3-E1 Cells[J]. Science and Technology of Food Industry, 2021, 42(2): 302-309. DOI: 10.13386/j.issn1002-0306.2020030281
    [10]SHI Xuan, CHENG Xiao-qing, YANG Yong, TAN Hong-jun, LIANG Xu-ming, SHI Wen-juan, SU Zhi-min. Optimization the extraction process of polysaccharide by response surface methodology from the Tremella fuciformis pedicel and its antioxidant activity[J]. Science and Technology of Food Industry, 2017, (02): 297-301. DOI: 10.13386/j.issn1002-0306.2017.02.049
  • Cited by

    Periodical cited type(4)

    1. 关玉婷,温思萌,冯雪,白云鹏,陈瑞瑞,沈晓勇,冯佳宁,常世敏,程鑫颖. 茯苓渣多糖组成分析及体外抗癌、免疫活性研究. 食品工业科技. 2022(21): 381-387 . 本站查看
    2. 李霞,刘承鑫,黄艳,莫观兰,关媛. 碱提西番莲叶多糖的分离、鉴定及生物活性. 食品与机械. 2021(03): 137-143 .
    3. 钱艳艳,王丽,文春南,周艳,李晓,张丽先,周贤宇,麻兵继. 鲜地黄低聚糖纯化及其理化特性和抗氧化活性研究. 天然产物研究与开发. 2021(09): 1470-1477 .
    4. 王峙力,王鑫,韩烨,谢越,马永强. 甜玉米芯硒多糖的制备及其对淀粉酶抑制作用. 包装工程. 2021(21): 33-41 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (218) PDF downloads (38) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return