HUANG Yu, LIU Weihong, WANG Hongyang, et al. Optimization of Bionic Enzymatic Hydrolysis of Undaria pinnatifida sporophyll and Antioxidant Activity Analysis of Its Hydrolysate Peptides[J]. Science and Technology of Food Industry, 2022, 43(13): 180−189. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021100073.
Citation: HUANG Yu, LIU Weihong, WANG Hongyang, et al. Optimization of Bionic Enzymatic Hydrolysis of Undaria pinnatifida sporophyll and Antioxidant Activity Analysis of Its Hydrolysate Peptides[J]. Science and Technology of Food Industry, 2022, 43(13): 180−189. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021100073.

Optimization of Bionic Enzymatic Hydrolysis of Undaria pinnatifida sporophyll and Antioxidant Activity Analysis of Its Hydrolysate Peptides

More Information
  • Received Date: October 12, 2021
  • Available Online: April 22, 2022
  • Bioactive peptides were prepared from Undaria pinnatifida sporophyll by bionic enzymatic hydrolysis. Response surface methodology (RSM) was used to optimize the enzymatic hydrolysis process based on single factor test with the polypeptide yield and degree of hydrolysis as the main indexes, and the scavenging ability of polypeptide on three free radicals (DPPH, ABTS, OH) was evaluated. The results showed that the optimal conditions of biomimetic enzymatic hydrolysis were as follows: Ultrasonic power 720 W, ultrasonic wall breaking time 40 min, solid-liquid ratio 1:104 g/mL, pepsin dosage 6.1%, enzymatic hydrolysis time 2.5 h, trypsin dosage 5%, enzymatic hydrolysis time 3 h. Under these conditions, the polypeptide yield was 21.17% and the degree of hydrolysis was 43.07%. Enzymatic peptide had good scavenging effects on DPPH, ABTS and OH radicals with IC50 values of 5.71, 1.31 and 1.35 mg/mL, respectively. The optimized bionic enzymatic hydrolysis process of Undaria pinnatifida sporophyll was reasonable and feasible, and the enzymatic peptide had good free radical scavenging ability, indicating that the enzymatic peptide had good antioxidant activity and could be used as ingredients in the development of functional food.
  • [1]
    游丽君, 黄诗铭, 郑桂青, 等. 裙带菜多糖的结构及抗氧化、免疫调节活性[J]. 华南理工大学学报(自然科学版),2018,46(11):29−38. [YOU L J, HUANG S M, ZHENG G Q, et al. Structure, antioxidant activity and immunomodulatory activity of polysaccharides isolated from Undaria pinnatifida[J]. Journal of South China University of Technology (Natural Science Edition),2018,46(11):29−38.

    YOU L J, HUANG S M, ZHENG G Q, et al. Structure, antioxidant activity and immunomodulatory activity of polysaccharides isolated from Undaria pinnatifida[J]. Journal of South China University of Technology (Natural Science Edition), 2018, 46(11) : 29-38.
    [2]
    闫程程, 刘海梅, 赵芹, 等. 裙带菜孢子叶的生物活性物质及其在食品中的应用[J]. 食品与发酵工业,2021,47(7):307−315. [YAN C C, LIU H M, ZHAO Q, et al. Bioactive substances of Undaria pinnatifida sporophyll and application in food[J]. Food and Fermentation Industries,2021,47(7):307−315.

    YAN C C, LIU H M, ZHAO Q, et al. Bioactive substances of Undaria pinnatifida sporophyll and application in food[J]. Food and Fermentation Industries, 2021, 47(7): 307-315.
    [3]
    WANG L, PARK Y J, JEON Y J, et al. Bioactivities of the edible brown seaweed, Undaria pinnatifida: A review[J]. Aquaculture,2018,495:873−880. doi: 10.1016/j.aquaculture.2018.06.079
    [4]
    李红艳, 王颖, 刘天红, 等. 裙带菜孢子叶营养成分分析及品质评价[J]. 南方农业学报,2018,49(9):1821−1826. [LI H Y, WANG Y, LIU T H, et al. Analysis and evaluation of nutrient composition in of Undaria pinnatifida[J]. Southern Agricultural Journal,2018,49(9):1821−1826. doi: 10.3969/j.issn.2095-1191.2018.09.20

    LI H Y, WANG Y, LIU T H, et al. Analysis and evaluation of nutrient composition in of Undaria pinnatifida[J]. Southern Agricultural Journal, 2018, 49(9): 1821-1826. doi: 10.3969/j.issn.2095-1191.2018.09.20
    [5]
    JING R R, GUO K K, ZHONG Y L, et al. Protective effects of fucoidan purified from Undaria pinnatifida against UV-irradiated skin photoaging[J]. Annals of Translational Medicine,2021,9(14):1185−1185. doi: 10.21037/atm-21-3668
    [6]
    ETMAN S M, MEHANANA R A, BARY A A, et al. Undaria pinnatifida fucoidan nanoparticles loaded with quinacrine attenuate growth and metastasis of pancreatic cancer[J]. International Journal of Biological Macromolecules,2021,170:284−297. doi: 10.1016/j.ijbiomac.2020.12.109
    [7]
    DICKINSON B C, CHANG C J. Chemistry and biology of reactive oxygen species in signaling or stress responses[J]. Nature Chemical Biology,2011,7(8):504. doi: 10.1038/nchembio.607
    [8]
    TONG T, LI J L, KO D O, et al. In vitro antioxidant potential and inhibitory effect of seaweed on enzymes relevant for hyperglycemia[J]. Food Science and Biotechnology,2014,23(6):2037−2044. doi: 10.1007/s10068-014-0277-z
    [9]
    NAJAFIAN L, BABJI A S. A review of fish-derived antioxidant and antimicrobial peptides: Their production, assessment, and applications[J]. Peptides,2012,33(1):178−185. doi: 10.1016/j.peptides.2011.11.013
    [10]
    WANG X Q, ZHANG X W. Separation, antitumor activities, and encapsulation of polypeptide from chlorella pyrenoidosa[J]. Wiley Online Library,2013,29(3):681−687.
    [11]
    马睿, 刘玉军, 魏永利, 等. 天龙仿生酶解有效部位的最佳脱脂工艺研究[J]. 中国现代应用药学,2019(13):1608−1611. [MA R, LIU Y J, WEI Y L, et al. Study on the best degreasing process of effective parts of Tianlong bionic enzymatic hydrolysis[J]. Chinese Modern Applied Pharmacy,2019(13):1608−1611.

    MA R, LIU Y J, WEI Y L, et al. Study on the best degreasing process of effective parts of Tianlong bionic enzymatic hydrolysis[J]. Chinese Modern Applied Pharmacy. 2019(13): 1608-1611.
    [12]
    贺光祖, 谭碧娥, 肖昊, 等. 肠道小肽吸收利用机制及其营养功能[J]. 动物营养学报,2015,27(4):1047−1054. [HE G Z, TAN B E, XIAO H, et al. Peptide absorption and utilization and its nutritional functions in intestine[J]. Chinese Journal of Animal Nutrition,2015,27(4):1047−1054. doi: 10.3969/j.issn.1006-267x.2015.04.007

    HE G Z, TAN B E, XIAO H, et al. Peptide absorption and utilization and its nutritional functions in intestine[J]. Chinese Journal of Animal Nutrition, 2015, 27(4): 1047-1054. doi: 10.3969/j.issn.1006-267x.2015.04.007
    [13]
    汪国威, 张凌云, 杨莹, 等. 玉足海参仿生酶解的工艺研究[J]. 食品工业,2018(11):151−154. [WANG G W, ZHANG L Y, YANG Y, et al. Study on biomimetic enzymatic hydrolysis process of Yuzu Sea Cucumber[J]. Food Industry,2018(11):151−154.

    WANG G W, ZHANG L Y, YANG Y, et al. Study on biomimetic enzymatic hydrolysis process of Yuzu Sea Cucumber[J]. Food Industry, 2018(11): 151-154.
    [14]
    刘元涛, 张惠惠, 王升光, 等. 阿胶仿生酶解前后提高免疫力作用对比研究[J]. 时珍国医国药,2016(9):2158−2160. [LIU Y T, ZHANG H H, WANG S G, et al. Comparative study on improving immunity before and after bionic enzymatic hydrolysis of donkey-hide gelatin[J]. Shizhen National Medicine and National Medicine,2016(9):2158−2160.

    LIU Y T, ZHANG H H, WANG S G, et al. Comparative study on improving immunity before and after bionic enzymatic hydrolysis of donkey-hide gelatin[J]. Shizhen National Medicine and National Medicine, 2016(9): 2158-2160.
    [15]
    揣欣欣, 郭冰洁, 刘露露, 等. 响应面法优化鹿骨多肽酶解工艺及其体外抗氧化活性[J]. 食品工业科技,2021,42(13):133−140. [CHUAI X X, GUO B J, LIU L L, et al. The preparation technology of deer bone polypeptide and its antioxidant activity in vitro[J]. Science and Technology of Food Industry,2021,42(13):133−140.

    CHUAI X X, GUO B J, LIU L L, et al. The preparation technology of deer bone polypeptide and its antioxidant activity in vitro[J]. Science and Technology of Food Industry, 2021, 42(13): 133-140.
    [16]
    姜丰, 刘静波, 马思彤, 等. 卵白蛋白体外模拟胃肠道消化产物的抗氧化活性及其结构表征[J]. 中国食品学报,2021,21(9):10−18. [JIANG F, LIU J B, MA S T, et al. Antioxidant activity of ovalbumin from simulated gastrointestinal tract in vitro and structure characterization[J]. Journal of Chinese Institute of Food Science and Technology,2021,21(9):10−18.

    JIANG F, LIU J B, MA S T, et al. Antioxidant activity of ovalbumin from simulated gastrointestinal tract in vitro and structure characterization[J]. Journal of Chinese Institute of Food Science and Technology, 2021, 21(9): 10-18.
    [17]
    韩荣欣, 张红印, 周光鑫, 等. 体外模拟消化对酸枣仁蛋白酶解产物抗氧化活性的影响[J]. 食品与机械,2021,37(7):171−176. [HAN R X, ZHANG H Y, ZHOU G X, et al. Effect of simulated gastrointestinal in vitro on the antioxidant activity of Semen Ziziphi spinosae protein hydrolysates[J]. Food & Machinery,2021,37(7):171−176.

    HAN R X, ZHANG H Y, ZHOU G X, et al. Effect of simulated gastrointestinal in vitro on the antioxidant activity of Semen ziziphispinosae protein hydrolysates[J]. Food & Machinery, 2021, 37(7): 171-176.
    [18]
    贾蕾, 何慧, 向极钎, 等. 碎米荠硒肽的制备及其体外抗氧化活性分析[J/OL]. 食品工业科技: 1−20 [2021-10-30].

    JIA L, HE H, XIANG J Q, et al. Study on preparation and antioxidant activity of selenopeptide from Cardamine enshiensis in vitro[J/OL]. Science and Technology of Food Industry: 1−20 [2021-10-30].
    [19]
    郑志强, 郝利民, 刘晋, 等. 小麦蛋白双酶酶解制备高抗氧化性小麦肽研究[J]. 中国食品学报,2019,19(8):78−88. [ZHENG Z Q, HAO L M, LIU J, et al. Preparation of wheat peptide with high antioxidant activity by double enzymes hydrolysis of wheat gluten[J]. Journal of Chinese Institute of Food Science and Technology,2019,19(8):78−88.

    ZHENG Z Q, HAO L M, LIU J, et al. Preparation of wheat peptide with high antioxidant activity by double enzymes hydrolysis of wheat gluten[J]. Journal of Chinese Institute of Food Science and Technology, 2019, 19(8): 78-88.
    [20]
    于慧, 刘海梅, 赵芹, 等. 一种裙带菜抗肿瘤小分子肽及其制备方法与应用: 中国, 202011209544. 0[P]. 2020-11-03.

    YU H, LIU H M, ZHAO Q, et al. An anti-tumor small molecule peptide from Undaria pinnatifida and its preparation method and application: China, 202011209544. 0 [P]. 2020-11-03.
    [21]
    王竹君, 张学武. 螺旋藻水解肽的制备及其抗肿瘤活性研究[J]. 现代食品科技,2015,31(11):25−32. [WANG Z J, ZHANG X W. Preparation and antitumor activity of hydrolyzed peptides from Spirulina[J]. Modern Food Science and Technology,2015,31(11):25−32.

    WANG Z J, ZHANG X W. Preparation and antitumor activity of hydrolyzed peptides from Spirulina[J]. Modern Food Science and Technology, 2015, 31(11): 25-32.
    [22]
    胡栋宝, 杜薇, 杨猛. 响应面法优化巨大口蘑多糖提取工艺及抗氧化活性[J]. 中国调味品,2021,46(10):78−82. [HU D B, DU W, YANG M. Optimization of polysaccharide extraction process and antioxidant activity of Tricholoma giganteum by response surface methodology[J]. China Condiment,2021,46(10):78−82. doi: 10.3969/j.issn.1000-9973.2021.10.014

    HU D B, DU W, YANG M. Optimization of polysaccharide extraction process and antioxidant activity of Tricholoma giganteum by response surface methodology[J]. China Condiment, 2021, 46 (10): 78-82. doi: 10.3969/j.issn.1000-9973.2021.10.014
    [23]
    刘业萍. 福林酚法测定注射用肌氨肽苷中多肽的含量[J]. 北方药学,2016,13(1):2−3. [LIU Y P. Determination of polypeptides in inosinoside for injection by folinol method[J]. Northern Pharmacy,2016,13(1):2−3.

    LIU Y P. Determination of polypeptides in inosinoside for injection by folinol method[J]. Northern Pharmacy, 2016, 13(1): 2-3.
    [24]
    周慧江, 朱振宝, 易建华. 核桃蛋白水解物水解度测定方法比较[J]. 粮食与油脂,2012,25(2):28−30. [ZHOU H J, ZHU Z B, YI J H. Comparison of methods for determination of hydrolysis degree of walnut protein hydrolysates[J]. Cereals& Oils,2012,25(2):28−30. doi: 10.3969/j.issn.1008-9578.2012.02.008

    ZHOU H J, ZHU Z B, YI J H. Comparison of methods for determination of hydrolysis degree of walnut protein hydrolysates[J]. Cereals& Oils, 2012, 25(2): 28-30. doi: 10.3969/j.issn.1008-9578.2012.02.008
    [25]
    SHRUTI S. Significance of FRAP, DPPH, and CUPRAC assays for antioxidant activity determination in apple fruit extracts[J]. European Food Research and Technology,2020,246(3):591−598. doi: 10.1007/s00217-020-03432-z
    [26]
    于慧, 刘海梅, 李蒙娜, 等. 响应面法优化龙须菜蛋白酶解工艺及酶解液的抗氧化活性[J]. 食品工业科技,2017(12):157−163,170. [YU H, LUI H M, LI M N, et al. Optimization for enzymatic hydrolysis of Gracilaria lemaneiformis protein and antioxidant activity of its hydrolysate[J]. Science and Technology of Food Industry,2017(12):157−163,170.

    YU H, LUI H M, LI M N, et al. Optimization for enzymatic hydrolysis of Gracilaria lemaneiformis protein and antioxidant activity of its hydrolysate[J]. Science and Technology of Food Industry, 2017(12): 157-163, 170.
    [27]
    FANG Z, JIE Q, KIRAN T, et al. Purification and identification of an antioxidative peptide from peony (Paeonia suffruticosa Andr.) seed dreg[J]. Food Chemistry,2019:285.
    [28]
    谭曜, 方爱琴, 谢建敏, 等. 蜂胶乙醇溶液体外清除羟基自由基能力的测定[J]. 广东化工,2021,48(12):189−190,182. [TAN Z, FANG A Q, XIE J M, et al. Study on effect of propolis ethanol solution on scavenging hydroxyl radical in vitro[J]. Guangdong Chemical Industry,2021,48(12):189−190,182. doi: 10.3969/j.issn.1007-1865.2021.12.076

    TAN Z, FANG A Q, XIE J M, et al. Study on effect of propolis ethanol solution on scavenging hydroxyl radical in vitro[J]. Guangdong Chemical Industry, 2021, 48(12): 189-190, 182. doi: 10.3969/j.issn.1007-1865.2021.12.076
    [29]
    唐金鑫, 由高飞, 李秋阳, 等. 超声波辅助酶解花生蛋白制备α-淀粉酶抑制肽工艺优化[J/OL]. 食品工业科技: 1−14 [2021-10-06].

    TANG J X, YOU G F, LI Q Y, et al. Optimization of ultrasound-assisted enzymatic hydrolysis of peanut protein to prepare α-amylase inhibitory peptide[J/OL]. Science and Technology of Food Industry: 1−14 [2021-10-06].
    [30]
    袁莉婷, 刘玉德, 石文天, 等. 响应面优化超声波辅助碱法提取海带蛋白工艺[J]. 中国食品添加剂,2021,32(4):23−33. [YUAN L T, LIU Y D, SHI T W, et al. Optimization of ultrasound-assisted alkaline extraction of kelp protein by response surface[J]. China Food Additives,2021,32(4):23−33.

    YUAN L T, LIU Y D, SHI T W, et al. Optimization of ultrasound-assisted alkaline extraction of kelp protein by response surface[J]. China Food Additives, 2021, 32(4): 23-33.
    [31]
    朱伍权. 大豆蛋白的化学交联改性及其对大豆木材胶黏剂性能的影响[D]. 哈尔滨: 东北林业大学, 2015.

    ZHU W Q. Chemical crosslinking of soybeam protein and its effects on the properties of soybean protein-based wood adhesives[D]. Harbin: Northeast Forestry University, 2015.
    [32]
    纪晓林. 裙带菜孢子叶中岩藻黄质制备与抗氧化活性研究[D]. 大连: 大连工业大学, 2017.

    JI X L. Preparation and antioxidant activity of phytolaxanthin from Undaria pinnatifida spore leaves[D]. Dalian: Dalian Polytechnic University, 2017.
    [33]
    邓乾春, 陈春艳, 潘雪梅, 等. 白果活性蛋白的酶法水解及抗氧化活性研究[J]. 农业工程学报,2005,21(11):163−167. [DENG Q C, CHEN C Y, PAN X M, et al. Studies on enzymatic hydrolysis and antioxidant activity of active protein of Ginkgo[J]. Transactions of the Chinese Society of Agricultural Engineering,2005,21(11):163−167.

    DENG Q C, CHEN C Y, PAN X M, et al. Studies on enzymatic hydrolysis and antioxidant activity of active protein of Ginkgo[J]. Transactions of the Chinese Society of Agricultural Engineering, 2005, 21(11): 163-167.
    [34]
    林海燕. 南极磷虾酶解产物及其亚铁复合物的制备与理化性质研究[D]. 上海: 上海海洋大学, 2019.

    LIN H Y. Preparation and physic ochemical properties of enzymatic hydrolysates and ferrous complexes of Antarctic krill[D]. Shanghai: Shanghai Ocean University, 2019.
    [35]
    MAN J B, KAKUDA Y, AMOTT D R. Effect of storage temperature on age gelation of ultra-high temperature milk processed by direct and indirect heating systems[J]. Journal of Dairy Science,1986,69(12):2994−3001. doi: 10.3168/jds.S0022-0302(86)80761-5
    [36]
    WU W, HE L, LIANG Y, et al. Preparation process optimization of pig bone collagen peptide-calcium chelate using response surface methodology and its structural characterization and stability analysis[J]. Food Chemistry,2019,284:80−89. doi: 10.1016/j.foodchem.2019.01.103
    [37]
    毕秋芸. 裙带菜多肽的制备及其抗氧化活性的研究[J]. 中国调味品,2019,44(5):104−110. [BI Q Y. Study on the preparation and antioxidant activity of polypeptides from Undaria pinnatifada[J]. China Condiment,2019,44(5):104−110. doi: 10.3969/j.issn.1000-9973.2019.05.025

    BI Q Y. Study on the preparation and antioxidant activity of polypeptides from Undaria pinnatifada[J]. China Condiment, 2019, 44(5): 104-110. doi: 10.3969/j.issn.1000-9973.2019.05.025
    [38]
    曹振海, 乐彩虹, 陶宁萍, 等. 体外模拟消化对暗纹东方鲀鱼皮胶原蛋白肽结构特征及抗氧化活性的影响[J/OL]. 食品与发酵工业: 1−12 [2021-10-31]. https://doi.org/10.13995/j.cnki.11-1802/ts.028686.

    CAO Z H, LE C H, TAO N P, et al. Effects of structural characteristics and antioxidant activity of collagen bioactive peptides from Takifugu obscurus skin during simulated gastrointestinal digestion[J/OL]. Food and Fermentation Industries: 1−12 [2021-10-31].
    [39]
    徐杰, 林泽安, 李子青, 等. 响应面法优化珍珠龙胆石斑鱼肉肽的酶法制备工艺及酶解产物的抗氧化活性[J]. 食品工业科技,2020,41(19):205−211, 239. [XU J, LIN Z A, LI Z Q, et al. Optimization of enzymatic preparation and antioxidant activity of carniteptide from gentian grouper by response surface methodology[J]. Science and Technology of Food Industry,2020,41(19):205−211, 239.

    XU J, LIN Z A, LI Z Q, et al. Optimization of enzymatic preparation and antioxidant activity of carniteptide from gentian grouper by response surface methodology[J]. Science and Technology of Food Industry, 2020, 41(19): 205-211, 239.
    [40]
    冯晓文, 赵晓涵, 程青丽, 等. 模拟消化对乳清肽结构和抗氧化活性的影响[J]. 食品研究与开发,2021,42(18):1−7. [FENG X W, ZHAO X H, CHENG Q L, et al. Effects of simulated digestion on structure and antioxidant activity of whey peptides[J]. Food Research and Development,2021,42(18):1−7.

    FENG X W, ZHAO X H, CHENG Q L, et al. Effects of simulated digestion on structure and antioxidant activity of whey peptides[J]. Food Research and Development, 2021, 42(18): 1-7.
    [41]
    毛小雨. 体外模拟消化对芸豆蛋白结构特征及抗氧化活性的影响研究[D]. 大庆: 黑龙江八一农垦大学, 2020.

    MAO X Y. Effects of simulated digestion on protein structure and antioxidant activity of kidney bean in vitro[D]. Daqing: Helongjiang Bayi Agricultural University, 2020.
    [42]
    CACCIIUTTOLO M A, TRINH L, LUNPKIN J A, et al. Hyperoxia induces DNA damage in mammalian cells[J]. Free Radical Biology & Medicine,1993,14(3):267−276.
    [43]
    高蕾蕾. 牡丹籽蛋白的理化和功能特性及多肽的抗氧化活性研究[D]. 济南: 齐鲁工业大学, 2018.

    GAO L L. Study on physicochemical and functional properties of tree peony seed protein and antioxidant activity of polypeptides[D]. Jinan: Qilu University of Technology, 2018.
    [44]
    叶昱辉. 近江牡蛎多肽的分离纯化及其抗氧化、抗光老化活性研究[D]. 广州: 华南理工大学, 2018.

    YE Y H. Purification of Ostrea rivularis peptides and their antioxidant, antiphotoaging activities[D]. Guangzhou: South China University of Technology, 2018.
  • Cited by

    Periodical cited type(7)

    1. 李欣宜,李红波,莫海珍,刘振彬,胡梁斌,徐丹,张珈祎,姚丽姗. 预处理工艺对香菇品质的影响规律研究. 中国调味品. 2025(02): 133-140 .
    2. 刘俊红,徐佳丽,马亚娜,叶延欣. 香菇中呈味核苷酸提取工艺优化. 河南城建学院学报. 2024(02): 116-121 .
    3. 陈静,唐浩国,王嘉康,司启贺,申茹晓. 酶解法制备菌菇酱工艺优化. 食品与机械. 2024(04): 203-209 .
    4. 汪姣玲,樊振南,唐雄,徐欢欢,岳元媛. 香菇鲜味低钠盐的配方研究及其智能感官分析. 食品安全质量检测学报. 2022(04): 1264-1270 .
    5. 张婷婷,赖丽婷,王茵,魏雪琴. 低值水产品制备天然复合海鲜调味料的工艺研究. 包装与食品机械. 2022(02): 13-19 .
    6. 李旋,李强忠. 香菇深加工的工业化研究进展. 现代食品. 2022(21): 7-9 .
    7. 王福清,易静薇. 复合调味料的生产及研究进展. 中国调味品. 2021(10): 193-197 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (199) PDF downloads (19) Cited by(12)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return