JIN Xudong, WANG Junqi, CAO Chaoqing, et al. Study on the Technology of Extracting Fucoxanthin from Hizikia fusiforme by Cyclic Ultrasound[J]. Science and Technology of Food Industry, 2021, 42(17): 170−178. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020110256.
Citation: JIN Xudong, WANG Junqi, CAO Chaoqing, et al. Study on the Technology of Extracting Fucoxanthin from Hizikia fusiforme by Cyclic Ultrasound[J]. Science and Technology of Food Industry, 2021, 42(17): 170−178. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020110256.

Study on the Technology of Extracting Fucoxanthin from Hizikia fusiforme by Cyclic Ultrasound

More Information
  • Received Date: November 25, 2020
  • Available Online: July 06, 2021
  • The purpose of this study was to explore the extraction process of fucoxanthin from frozen Hizikia fusiforme by cyclic ultrasound. Based on single factor test, the response surface model and BP neural network model optimized by genetic algorithm were used to optimize the extraction parameters on the basis of single factor experiment. The results showed that the optimal extraction conditions, obtained by response surface model, were as follows: Extraction time 119 min, ultrasonic power 600 W, liquid-solid ratio 26.5:1 L/kg, circulating flow rate 8.6 L/min. Under these conditions, the actual extraction rate of fucoxanthin was 0.2195 g/kg, and the purity of the product was 3.42%. The optimal extraction conditions, obtained by BP neural network model, were as follows: Extraction time 118 min, ultrasonic power 680 W, liquid-solid ratio 23.5:1 L/kg, circulating flow rate 7.0 L/min. Under these conditions, the actual extraction rate of fucoxanthin was 0.2318 g/kg, and the purity of the product was 3.41%. The neural network model is feasible and slightly better than the response surface modelconcerning the extraction conditions, which has a certain reference value in large-scale algae extraction of fucoidin.
  • [1]
    曾呈奎, 陆保仁. 中国海藻志第三卷褐藻门第二册墨角藻目[M]. 北京: 科学出版社, 2000: 32−33.

    Zeng C K, Lu B R. Chinese seaweeds volume 3 phaeophyta book 2 fucus order[M]. Beijing: Science Press, 2000: 32−33.
    [2]
    国家药典委员会. 中华人民共和国药典2000年版一部[M]. 北京: 化学工业出版社, 2000: 243.

    Chinese Pharmacopoeia Commission. The 2000 edition of the Chinese pharmacopoeia of the People’s Republic of China[M]. Beijing: Chemical Industry Press, 2000: 243.
    [3]
    Liu Z L, Sun X W, Sun X, et al. Fucoxanthin isolated from undaria pinnatifida can interact with Escherichia coli and lactobacilli in the intestine and inhibit the growth of pathogenic bacteria[J]. Journal of Ocean University of China,2019,18:926. doi: 10.1007/s11802-019-4019-y
    [4]
    Zhang Y P, Xu W, Huang X Q, et al. Fucoxanthin ameliorates hyperglycemia, hyperlipidemia and insulin resistance in diabetic mice partially through IRS-1/PI3K/Akt and AMPK pathways[J]. J Funct Foods,2018,48:515−524. doi: 10.1016/j.jff.2018.07.048
    [5]
    Wu H L, Fu X Y, Cao W Q, et al. Fucoxanthin induces apoptosis in human glioma cells by triggering ROS-mediated oxidative damage and regulating MAPKs and PI3K/AKT pathways[J]. J Agric Food Chem,2019,67:2212−2219. doi: 10.1021/acs.jafc.8b07126
    [6]
    Lin H T, Tsou Y C, Chen Y T, et al. Effects of low-molecular-weight fucoidan and high stability fucoxanthin on glucose homeostasis, lipid metabolism, and liver function in a mouse model of type II diabetes[J]. Mar Drugs,2017,15(4):1−14.
    [7]
    Jin X, Zhao T T, Shi D, et al. Protective role of fucoxanthin in diethylnitrosamine-induced hepatocarcinogenesis in experimental adult rats[J]. Drug Development Research,2019,80(2):209−217. doi: 10.1002/ddr.21451
    [8]
    Wang J, Ma Y H, Yang J S, et al. Fucoxanthin inhibits tumour-related lymphangiogenesis and growth of breast cancer[J]. Journal of Cellular and Molecular Medicine,2019,23(3):2219−2229. doi: 10.1111/jcmm.14151
    [9]
    Kong Z L, SudirmanS, Hsu Y C, et al. Fucoxanthin-rich brown algae extract improves male reproductive function on streptozotocin-nicotinamide-induced diabetic rat model[J]. International Journal of Molecular Sciences,2019,20(18):4485. doi: 10.3390/ijms20184485
    [10]
    Gille A, Stojnic B, Derwenskus F, et al. A lipophilic fucoxanthin-rich phaeodactylumtricornutum extract ameliorates effects of diet-induced obesity in C57BL/6J mice[J]. Nutrients,2019,11(4):796. doi: 10.3390/nu11040796
    [11]
    Wright S W, Shearer J D. Rapid extraction and high-performance liquid chromatography of chlorophylls and carotenoids from marine phytoplankton[J]. J Chromatogr,1984,294:281−295. doi: 10.1016/S0021-9673(01)96134-5
    [12]
    Wang X X, Li H Y, Wang F Q, et al. Isolation of fucoxanthin from Sargassum thunbergii and preparation of microcapsules based on palm stearin solid lipid core[J]. Frontiers of Materials Science,2017,11(1):66−74. doi: 10.1007/s11706-017-0372-1
    [13]
    RaguramanV, Stanley A L, Mubarakali D, et al. Unraveling rapid extraction of fucoxanthin from Padina tetrastromatica: Purification, characterization and biomedical application[J]. Process Biochemistry,2018,73(8):211−219.
    [14]
    Sun X, Xu Y, Zhao L, et al. Thestability and bioaccessibility of fucoxanthin in spray-dried microcapsules based on various biopolymers[J]. RSC Adv,2018,8:35139−35149. doi: 10.1039/C8RA05621H
    [15]
    张文源, 高保燕, 雷学青, 等. 岩藻黄素的理化与生物学特性、制备技术及其生理活性研究进展[J]. 中国海洋药物,2015(3):85−99. [Zhang W Y, Gao B Y, Lei X Q, et al. Progress on physicochemical and biological properties, preparation techniques and physiological activities of fucoxanthin[J]. Chinese Journal of Marine Drugs,2015(3):85−99.
    [16]
    秦松, 童顺, 王希华, 等. 钝顶螺旋藻质粒的电镜观察及杂交研究[J]. 海洋与湖沼,1994(5):560−563, 576. [Qin S, Tong S, Wang X H,et al. The observation and hybridization study of plasmid from Spirulina platensis[J]. Oceanologia et Limnologia Sinica,1994(5):560−563, 576. doi: 10.3321/j.issn:0029-814X.1994.05.015
    [17]
    张光明, 常爱敏, 张盼月. 超声波水处理技术[M]. 北京: 中国建筑工业出版社, 2006: 7.

    Zhang G M, ChangA M, Zhang P Y, et al. Ultrasonic water treatment technology[M]. Beijing:China Architecture & Building Press, 2006: 7.
    [18]
    费荣昌. 实验设计与数据处理[M]. 第四版.上海: 华东师范大学出版社, 2001: 59−63.

    Fei R C. Experimental design and data processing fourth edition[M]. Fourth edition. Shanghai:East China Normal University Press, 2001: 59−63.
    [19]
    王小川, 史峰, 郁磊, 等. MATLAB神经网络43个案例分析[M]. 北京: 北京航空航天大学出版社, 2008: 1−9.

    Wang X C, Shi F, Yu L, et al. Analysis of 43 cases of MATLAB neural network[M]. Beijing:Beihang University Press, 2008: 1−9.
    [20]
    张泽旭. 神经网络控制与MATLAB仿真[M]. 哈尔滨: 哈尔滨工业大学出版社, 2011: 56.

    Zhang Z X. Neural network control and MATLAB simulation[M]. Haerbing:Harbin Institute of Technology Press, 2011: 56.
    [21]
    黄鹏程, 金伟锋, 万海同, 等. 遗传神经网络与遗传算法优选黄芪皂苷微波提取工艺条件[J]. 中草药,2019,50(16):3815−3823. [Huang P C, Jin W F, Wan H T, et al. Optimization of microwave extraction conditions of astragalus saponins by genetic neural network and genetic algorithm[J]. Chinese Traditional and Herbal Drugs,2019,50(16):3815−3823. doi: 10.7501/j.issn.0253-2670.2019.16.012
    [22]
    Huang S M, Kuo C H, Chen C A, et al. RSM and ANN modeling-based optimization approach for the development of ultrasound-assisted liposome encapsulation of piceid[J]. Ultrasonics Sonochemistry,2016,36:112−122.
    [23]
    G V S Bhagya Raj, K K Dash, Ultrasound-assisted extraction of phytocompounds from dragon fruit peel: Optimization, kinetics and thermodynamic studies[J]. Ultrasonics Sonochemistry, 2020, 68.
    [24]
    周小飞. 基于遗传算法优化的BP网络对生物柴油制备工艺的优化[D]. 昆明: 昆明理工大学, 2011.

    Zhou X F. Optimization of biodiesel preparation process based on bp network optimized by genetic algorithm[D]. Kunming: Kunming University of Science and Technology, 2011.
    [25]
    杜荣骞. 生物统计学[M]. 北京: 高等教育出版社, 2014: 292−293.

    Du R Q. Biostatistics[M]. Beijing: Higher Education Press, 2014: 292−293.
    [26]
    张纪兴, 陈燕忠. 人工神经网络建模结合遗传算法优化岗松油环糊精包合物制备工艺参数[J]. 中国药科大学学报,2011,42(4):324−328. [Zhang J X, Chen Y Z. Optimization of the process parameters of Baeckeae oil-β-cyclodextrin inclusion complex by artificial neural network and genetic algorithm[J]. Journal of China Pharmaceutical University,2011,42(4):324−328.
    [27]
    张纪兴, 周玉平, 陈小坚, 等. 应用神经网络-遗传算法优化青蒿油环糊精包合物制备工艺[J]. 中成药,2011,33(12):2166−2168. [Zhang J X, Zhou Y P, Chen X J, et al. Application of neural network-genetic algorithm to optimize preparation process of Artemisia annua oil cyclodextrin inclusion complex[J]. Chinese Traditional Patent Medicine,2011,33(12):2166−2168. doi: 10.3969/j.issn.1001-1528.2011.12.041
    [28]
    Tan X H, Wang L G, Wang W S. Optimization of injection molding process parameters with material properties based on GA and BP[J]. Applied Mechanics & Materials,2013,345:586−590.
    [29]
    Singh V, Khan M, Khan S, et al. Optimization of actinomycin V production by Streptomyces triostinicus using artificial neural network andgenetic algorithm[J]. Applied Microbiology and Biotechnology,2009,82(2):379−385. doi: 10.1007/s00253-008-1828-0
    [30]
    尹尚军, 徐涛, 刘丽平, 等. 羊栖菜岩藻黄质的提取工艺研究[J]. 食品工业科技,2011,32(4):272−275. [Yin S J, Xu T, Liu L P, et al. Study on extracting process of fucoxanthin from Sargassum fusiforme[J]. Science and Technology of Food Industry,2011,32(4):272−275.
    [31]
    李红艳, 刘天红, 姜晓东, 等. 超声辅助乙醇提取铜藻中岩藻黄素的工艺研究[J]. 中国农业科技导报,2018,20(9):146−153. [Li Y H, Liu T H, Jiang X D, et al. Optimization of ultrasonic enhanced extraction of fucoxanthin from Sargassum horneri[J]. Journal of Agricultural Science and Technology,2018,20(9):146−153.
    [32]
    陈建楠, 陈由强, 薛婷. 球等鞭金藻中岩藻黄素的提取及其纯化工艺研究[J]. 福建农业科技,2020(4):28−37. [Chen J N, Chen Y Q, Xue T, et al. Study on the Extraction and purification process of fucoxanthin in Isochrysis galbana[J]. Fujian Agricultural Science and Technology,2020(4):28−37.
    [33]
    刘丽平. 羊栖菜岩藻黄质的提取及理化性质研究[D]. 杭州: 浙江理工大学, 2012.

    Liu L P. Study on the extraction and physicochemical properties of fucoxanthin from Sargassum fusiforme[D]. Hangzhou: Zhejiang Sci-Tech University, 2012.
    [34]
    Luo X M, Gong H Y, He Z L, et al. Recent advances in applications of power ultrasound for petroleum industry[J]. Ultrasonics Sonochemistry,2020,70:105337.
    [35]
    Mamoru M, Yoshinobu N, Iwao Y, et al. Fluorescence properties of the allenic carotenoid fucoxanthin: Analysis of the effect of keto carbonyl group by using a model compound, all-trans-β-apo-8′-carotenal[J]. Journal of Luminescence,1992,51(1-3):1−10. doi: 10.1016/0022-2313(92)90013-Y
    [36]
    崔延瑞, 闫晓鹏, 吴青, 等. 超声/K2S2O8体系降解左氧氟沙星过程中活性自由基产生机制[J]. 环境科学学报, 2020, 40(9): 3241−3249.

    Cui Y R, Yan X P, Wu Q, et al. Generation mechanism of active free radicals in the processes of levofloxacin degradation in US/K2S2O8 system[J]. Acta Scientiae Circumstantiae, 2020, 40(9): 3241−3249.
    [37]
    谢雯静, 袁松虎. 二价铁形态对沉积物活化氧气产生羟自由基氧化效应的影响[C]. 中国矿物岩石地球化学学会第17届学术年会论文摘要集. 贵州: 中国矿物岩石地球化学学会, 2019: 1.

    Xie W J, Yuan S H. Influence of the form of divalent iron on the oxidation effect of hydroxyl radicals produced by activated oxygen in sediment[C]. Abstracts of Papers of the 17th Annual Conference of Chinese Society of Mineralogy, Petrology and Geochemistry.Guizhou: Chinese Society for Mineralogy, Petrology and Geochemistry, 2019: 1.
    [38]
    王乐, 李丽, 牟海津. 鼠尾藻岩藻黄素超声辅助提取及其纯化工艺优化[J]. 食品工业科技,2018,39(8):141−146. [Wang L, Liu L, Mou H J. Optimization of ultrasonic assisted extraction and purification of fucoxanthin from Sargassum thunbergii[J]. Science and Technology of Food Industry,2018,39(8):141−146.
    [39]
    许靖, 迟祥, 陈献明, 等. 依据响应曲面法和BP神经网络对木纤维脉冲-旋流气流干燥工艺优化[J]. 东北林业大学学报,2020,48(4):104−108. [Xu J, Chi X, Chen X M, et al. Optimization of wood fiber impulse-cyclone airflow drying process with RSM and BP neural network[J]. Journal of Northeast Forestry University,2020,48(4):104−108. doi: 10.3969/j.issn.1000-5382.2020.04.019
    [40]
    刘丽平, 奚歆儿, 汪财生, 等. 超声波辅助提取羊栖菜岩藻黄质的工艺优化[J]. 浙江农业科学,2012(3):380−384. [Liu L P, Xi X E, Wang C S, et al. Optimization of ultrasonic-assisted extraction of fucoxanthin from Sargassum fusiforme[J]. Journal of Zhejiang Agricultural Sciences,2012(3):380−384. doi: 10.3969/j.issn.0528-9017.2012.03.043
    [41]
    尹宗美, 王丹, 石佳, 等. 羊栖菜藻渣中岩藻黄质制备技术及工艺优化[J]. 食品研究与开发,2017,38(15):134−138. [Yin Z M, Wang D, Shi J, et al. Study on extracting process of fucoxanthin from Sargassum fusiforme Residue[J]. Food Research and Development,2017,38(15):134−138. doi: 10.3969/j.issn.1005-6521.2017.15.027
  • Related Articles

    [1]WANG Li, YAN Zikang, DU Jin, WANG Yuanliang. Establishment of a Predictive Model for the Quality Assessment of Chilled Meat Using a Moth-Flame Optimization BP Neural Network[J]. Science and Technology of Food Industry, 2024, 45(21): 310-321. DOI: 10.13386/j.issn1002-0306.2023120367
    [2]MA Hongjiang, HAO Xiyu, GAO Ming, YU Youqiang, YANG Shuheng, LIU Shiwei, MA Xishan, WANG Wenxin, DUAN Shenglin, WANG Xue. Distinction and Recognition of the 'Black Pearl' Fresh Corn Origin Based on Electronic Nose and BP Neural Network[J]. Science and Technology of Food Industry, 2024, 45(13): 239-245. DOI: 10.13386/j.issn1002-0306.2023070135
    [3]XI Hongjie, SONG Lijun, DENG Yuming, LI Zepeng, LU Lixin, ZENG Ke. Shelf Life Prediction of UHT Milk Packaging Based on BP Neural Network[J]. Science and Technology of Food Industry, 2024, 45(4): 205-210. DOI: 10.13386/j.issn1002-0306.2023020107
    [4]LI Xian-yu, LIU Meng-meng, YAN Hai-ying, DU Chun-ying, WANG Peng. Optimization of enzymatic processing for α-Glucosidase inhibitor from scallop skirts on BP neural network[J]. Science and Technology of Food Industry, 2018, 39(5): 171-174.
    [5]LIU Huan-yan, ZHENG Guang-yao, WANG Yan-bin, HE Liang, LIU Yu, CHENG Jun-wen, LI Wei-qi. Process parameter optimization of microwave assisted extraction of flavonoids from Ficus carica Linn based on BP neural network[J]. Science and Technology of Food Industry, 2017, (19): 197-202. DOI: 10.13386/j.issn1002-0306.2017.19.036
    [6]JIANG Tong-qiang, REN Ye. GA-BP neural network and its application in safety evaluation of liquid milk[J]. Science and Technology of Food Industry, 2017, (05): 289-292. DOI: 10.13386/j.issn1002-0306.2017.05.046
    [7]LIU Meng-meng, LI Yin-ping, YAN Hai-ying, ZHANG Gao-li, WANG peng. Optimization of enzymatic processing for antioxidant peptides from oyster based on BP neural network[J]. Science and Technology of Food Industry, 2016, (20): 206-210. DOI: 10.13386/j.issn1002-0306.2016.20.032
    [8]WANG Ji- long, LIU Xiao- xia, WEI Shu- chang, LIU Chun, JIN Hui, FAN Ling-yun. Total saponins retention rate prediction model of ultrafiltration for fibrous rhizome herbs based on BP neural network[J]. Science and Technology of Food Industry, 2016, (12): 85-88. DOI: 10.13386/j.issn1002-0306.2016.12.008
    [9]HUO Dan-qun, FENG Dan, ZHOU Rong-ling, SONG Xing-xing, ZHOU Jun, SHEN Xiao-juan, SHEN Cai-hong, HOU Chang-jun. Optimization of extraction technology of total flavonoids from lotus leaf by BP neural network and exploration of flavonoids stability[J]. Science and Technology of Food Industry, 2014, (16): 274-280. DOI: 10.13386/j.issn1002-0306.2014.16.052
    [10]Optimization of extraction process of soluble dietary fiber from orange peel based on BP neural network[J]. Science and Technology of Food Industry, 2012, (15): 258-262. DOI: 10.13386/j.issn1002-0306.2012.15.084
  • Cited by

    Periodical cited type(6)

    1. 李宁洁,景炳年,王伟,刘雨晴,谢晓阳,董跟来,王学方,魏磊. 五月艾营养成分、活性物质及重金属含量测定与分析. 生物技术进展. 2025(01): 102-109 .
    2. 景炳年,常霞,魏磊,谢晓阳,周雍,王志尧,刘雨晴,王伟. 博爱县赤松茸营养成分、生物活性物质及重金属含量分析与评价. 食品工业科技. 2022(04): 278-285 . 本站查看
    3. 吴孟华,邓静,张英,李杰,黄建香,林泽斌,曹晖. 岭南鲍姑艾(红脚艾)的品种考证. 中药材. 2022(01): 235-241 .
    4. 农彦贤,郝红梅,叶志杰,彭慎,谭冬明,李玉英. 红蓝草主要营养成分分析与评价. 广东化工. 2021(10): 234-237 .
    5. 沈宏桂,刘立萍,罗宏泉,陈慧,贺鹏. ICP-AES法对怀化地区艾草的21种矿质元素分析. 农业与技术. 2021(20): 74-76 .
    6. 梅瑜,徐世强,顾艳,孙铭阳,周芳,李静宇,张闻婷,王继华. 红脚艾蒿的转录组解析. 广东农业科学. 2021(12): 174-180 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (192) PDF downloads (21) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return