Citation: | FU Hongling, FAN Hongliang, LYU Bo, et al. Research Progress of Soybean Protein Gels at Subunit Level[J]. Science and Technology of Food Industry, 2021, 42(7): 382−389. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020050338. |
[1] |
E M Bainy, S M Tosh, M Corredig, et al. Protein subunit composition effects on the thermal denaturation at different stages during the soy protein isolate processing and gelation profiles of soy protein isolates[J]. Journal of the American Oil Chemists Society,2008,85(6):581−590. doi: 10.1007/s11746-008-1238-6
|
[2] |
Nogueira, Amanda de C, Steel C J. Protein enrichment of biscuits: A review[J]. Food Reviews International,2018,34(8):796−809. doi: 10.1080/87559129.2018.1441299
|
[3] |
W Chao, W Jiamei, Y Xinyu, et al. Effect of partial replacement of water-soluble cod proteins by soy proteins on the heat-induced aggregation and gelation properties of mixed protein systems[J]. Food Hydrocolloids,2020,100:105417. doi: 10.1016/j.foodhyd.2019.105417
|
[4] |
刘强, 刘安让, 赵亚萍. 大豆分离蛋白在乳制品中的应用发展[J]. 食品工业科技,2008,29(8):287−288.
|
[5] |
Sandra R T, Kelly A T, Carson Lea Ann, et al. Isolated soy protein consumption reduces urinary albumin excretion and improves the serum lipid profile in men with type 2 diabetes mellitus and nephropathy[J]. Journal of Nutrition,2004,134(8):1874−1880. doi: 10.1093/jn/134.8.1874
|
[6] |
Sam J Bhathena, Ali A Ali, Christian H, et al. Dietary flaxseed meal is more protective than soy protein concentrate against hypertriglyceridemia and steatosis of the liver in an animal model of obesity[J]. Journal of the American College of Nutrition,2003,22(2):157−164. doi: 10.1080/07315724.2003.10719289
|
[7] |
Inoue Nao, Nagao Koji, Sakata Kotaro, et al. Screening of soy protein-derived hypotriglyceridemic di-peptides in vitro and in vivo[J]. Lipids in Health and Disease,2011,10(1):85. doi: 10.1186/1476-511X-10-85
|
[8] |
Cynthia, Chatterjee, Liu Jiajie, et al. The α' subunit of β-conglycinin and various glycinin subunits of soy are not required to modulate hepatic lipid metabolism in rats[J]. European Journal of Nutrition,2017,57(3):1157−1168.
|
[9] |
谭慧. 高压处理对大豆分离蛋白—多糖体系功能特性及结构影响研究[D]. 哈尔滨: 东北农业大学, 2015.
|
[10] |
Yu Cheng, Prince Ofori Donkor, Xiaofeng Ren, et al. Effect of ultrasound pretreatment with mono-frequency and simultaneous dual frequency on the mechanical properties and microstructure of whey protein emulsion gels[J]. Food Hydrocolloids,2019,89(4):434−442.
|
[11] |
曾剑华, 杨杨, 刘琳琳, 等. 热处理过程中大豆11S球蛋白解离缔合行为研究进展[J]. 食品科学,2019,40(11):303−312. doi: 10.7506/spkx1002-6630-20180614-274
|
[12] |
Wu Chao, Hua Yufei, Chen Yeming, et al. Effect of temperature, ionic strength and 11S ratio on the rheological properties of heat-induced soy protein gels in relation to network proteins content and aggregates size[J]. Food Hydrocolloids,2017,66(5):389−395.
|
[13] |
Yamagishi T, Takahashi N, Kondo N, et al. Gel formation mechanism of soybean glycinin (I): Polymerization of acidic subunit as a trigger of thermal gelation[J]. Reseach Reports National Institute of Technology Hachinohe College,2018,41:55−59.
|
[14] |
Yamagishi T, Takahashi N, Tabata H, et al. Gel formation mechanism of soybean glycinin (II): Evidence for polymerization of acidic subunit as a thermal gelation initiator[J]. Research Reports Hachinohe Technical College,2018,41:73−78.
|
[15] |
Pavlicevic M Z, Tomic M D, Djonlagic J A, et al. Evaluation of variation in protein composition on solubility, emulsifying and gelling properties of soybean genotypes synthesizing β' subunit[J]. Journal of the American Oil Chemists' Society,2018,95(2):123−134. doi: 10.1002/aocs.12002
|
[16] |
Nik A M, Alexander M, Poysa V, et al. Effect of soy protein subunit composition on the rheological properties of soymilk during acidification[J]. Food Biophysics,2011,6(1):26−36. doi: 10.1007/s11483-010-9172-1
|
[17] |
Preece K E, Hooshyar N, Zuidam N J. Whole soybean protein extraction processes: A review[J]. Innovative Food Science and Emerging Technologies,2017,43:163−172. doi: 10.1016/j.ifset.2017.07.024
|
[18] |
Zhang, Yan, Chen, et al. Complexation of thermally-denatured soybean protein isolate with anthocyanins and its effect on the protein structure and in vitro digestibility[J]. Food Research International,2018,106:619−625. doi: 10.1016/j.foodres.2018.01.040
|
[19] |
Liu, KeShun. Soybeans chemistry and nutritional value of soybean components[J]. Soybeans,1997:25−113.
|
[20] |
Shi, Junyou, Gao, et al. The effects of thermal-acid treatment and crosslinking on the water resistance of soybean protein[J]. Industrial Crops and Products,2015,74:122−131. doi: 10.1016/j.indcrop.2015.04.026
|
[21] |
M A Moreira, M A Hermodson, B A Larkins, et al. Partial characterization of the acidic and basic polypeptides of glycinin[J]. Journal of Biological Chemistry,1979,254(19):9921−9926. doi: 10.1016/S0021-9258(19)83605-0
|
[22] |
Shi Meng, Sam Chang, Anne M Gillen, et al. Protein and quality analyses of accessions from the USDA soybean germplasm collection for tofu production[J]. Food Chemistry,2016,213(12):31−39.
|
[23] |
V H Thanh, Kazuo Shibasaki. Major proteins of soybean seeds. Reconstitution of. β. -conglycinin from its subunits[J]. Journal of Agricultural & Food Chemistry,1978,26(3):695−698.
|
[24] |
Shimpei, Morita, Masami, et al. Purification, characterization, and crystallization of single molecular species of β-conglycinin from soybean seeds[J]. Bioscience, Biotechnology, and Biochemistry,2014,60(5):866−873.
|
[25] |
Y Maruyama, N Maruyama, B Mikami, et al. Structure of the core region of the soybean β-conglycinin α′ subunit[J]. Acta Crystallographica,2004,60(2):289−297.
|
[26] |
N Maruyama, M Adachi, K Takahashi, et al. Crystal structures of recombinant and native soybean β-conglycinin β homotrimers[J]. European Journal of Biochemistry,2001,268(12):3595−3604. doi: 10.1046/j.1432-1327.2001.02268.x
|
[27] |
Adachi M, Kanamori J, MasudaT, et al. Crystal structure of soybean 11S globulin: Glycinin A3B4 homohexamer[J]. Proceedings of the National Academy of Sciences,2003,100(12):7395−7400. doi: 10.1073/pnas.0832158100
|
[28] |
M Adachi, Ho Chunying, S Utsumi. Effects of designed sulfhydryl groups and disulfide bonds into soybean proglycinin on its structural stability and heat-induced gelation[J]. Journal of Agricultural and Food Chemistry,2004,52(18):5717−5723. doi: 10.1021/jf0496595
|
[29] |
R A Badley, D Atkinson, H Hauser, et al. The structure, physical and chemical properties of the soy bean protein glycinin[J]. Biochimica Et Biophysica Acta,1976,412(2):214−228.
|
[30] |
I C Peng, D W Quass, W R Dayton, et al. The physicochemical and functional properties of soybean 11S globulin - a review[J]. Cereal Chemistry,1984,61(6):480−490.
|
[31] |
M Tezuka, K Yagasaki, T Ono. Changes in characters of soybean glycinin groups I, IIa, and IIb caused by heating[J]. Journal of Agricultural and Food Chemistry,2004,52(6):1693−1699. doi: 10.1021/jf030353s
|
[32] |
V Poysa, L Woodrow, K Yu. Effect of soy protein subunit composition on tofu quality[J]. Food Research International,2006,39(3):309−317. doi: 10.1016/j.foodres.2005.08.003
|
[33] |
M Adachi, Y Takenaka, Andrew B Gidamis, et al. Crystal structure of soybean proglycinin A1aB1b homotrimer[J]. Journal of Molecular Biology,2001,305(2):291−305. doi: 10.1006/jmbi.2000.4310
|
[34] |
李玉珍, 肖怀秋, 兰立新. 大豆分离蛋白功能特性及其在食品工业中的应用[J]. 中国食品添加剂,2008(1):121−124, 109. doi: 10.3969/j.issn.1006-2513.2008.01.027
|
[35] |
田琨, 管娟, 邵正中, 等. 大豆分离蛋白结构与性能[J]. 化学进展,2008,20(4):565−573.
|
[36] |
Chen N, Zhao M, Chassenieux C, et al. The effect of adding NaCl on thermal aggregation and gelation of soy protein isolate[J]. Food Hydrocolloids,2017,70(9):88−95.
|
[37] |
Chen N, Nicolai T, Chassenieux C, et al. pH and ionic strength responsive core-shell protein microgels fabricated via simple coacervation of soy globulins[J]. Food Hydrocolloids,2020,105:105853. doi: 10.1016/j.foodhyd.2020.105853
|
[38] |
Jacoba M S Renkema, Harry Gruppen, Ton Van Vliet. Influence of pH and ionic strength on heat-induced formation and rheological properties of soy protein gels in relation to denaturation and their protein compositions[J]. Journal of Agricultural and Food Chemistry,2002,50(21):6064−6071. doi: 10.1021/jf020061b
|
[39] |
T Nakamura, S Utsumi, T Mori. Network structure formation in thermally induced gelation of glycinin[J]. Journal of Agricultural and Food Chemistry,1984,32(2):349−352. doi: 10.1021/jf00122a042
|
[40] |
Peng X Y, Ren C G, Guo S T. Particle formation and gelation of soymilk: Effect of heat[J]. Trends in Food Science and Technology,2016,54:138−147. doi: 10.1016/j.jpgs.2016.06.005
|
[41] |
Guo Jian, Yang Xiaoquan, He Xiuting, et al. Limited aggregation behavior of β-conglycinin and its terminating effect on glycinin aggregation during heating at pH 7.0[J]. Journal of Agricultural and Food Chemistry,2012,60(14):3782−3791. doi: 10.1021/jf300409y
|
[42] |
Guo Jian, Zhang Ye, Yang Xiaoquan. A novel enzyme cross-linked gelation method for preparing food globular protein-based transparent hydrogel[J]. Food Hydrocolloids,2012,26(1):277−285. doi: 10.1016/j.foodhyd.2011.06.005
|
[43] |
He X T, Yuan D B, Wang J M, et al. Thermal aggregation behaviour of soy protein: Characteristics of different polypeptides and subunits[J]. Journal of the Science of Food and Agriculture,2016,96(4):1121−1131. doi: 10.1002/jsfa.7184
|
[44] |
Andrew T James, Aijun Yang. Interactions of protein content and globulin subunit composition of soybean proteins in relation to tofu gel properties[J]. Food Chemistry,2016,194(5):284−289.
|
[45] |
Jacoba M S Renkema, Catriona M M Lakemond, Harmen H J De Jongh, et al. The effect of pH on heat denaturation and gel forming properties of soy proteins[J]. Journal of Biotechnology,2000,79(3):223−230. doi: 10.1016/S0168-1656(00)00239-X
|
[46] |
T Nakamura, S Utsumi, T Mori. Interactions during heat-induced gelation in a mixed system of soybean 7S and 11S globulins[J]. Agricultural and Biological Chemistry,1986,50(10):2429−2435.
|
[47] |
Utsumi S, Damodaran S, Kinsella J E. Heat-induced interactions between soybean proteins: preferential association of 11S basic subunits and. β. subunits of 7S[J]. Journal of Agricultural and Food Chemistry,1984,32(6):1406−1412. doi: 10.1021/jf00126a047
|
[48] |
祝祥威, 黄行健, 赵琪, 等. 亚基水平上大豆蛋白改性修饰的研究进展[J]. 食品科学,2012,33(23):388−392.
|
[49] |
陈海敏, 华欲飞. 品种差异对大豆蛋白质功能性的影响[J]. 中国油脂,2000,25(6):178−180. doi: 10.3321/j.issn:1003-7969.2000.06.054
|
[50] |
袁德保. 大豆蛋白热聚集行为及其机理研究[D]. 广州: 华南理工大学, 2010.
|
[51] |
张国敏. 种子贮藏蛋白亚基缺失大豆种质的鉴定及其蛋白质功能性评价与α亚基缺失的分子机制[D]. 南京: 南京农业大学, 2014.
|
[52] |
B M Salleh M R, N Maruyama, K Takahashi, et al. Gelling properties of soybean β-conglycinin having different subunit compositions[J]. Bioscience Biotechnology and Biochemistry,2014,68(5):1091−1096.
|
[53] |
周宇锋, 宋莲军, 乔明武, 等. 大豆蛋白亚基与豆腐的质构特性的相关性[J]. 中国粮油学报,2014,29(4):22−25, 31.
|
[54] |
Wang F, Meng J, Sun L, et al. Study on the tofu quality evaluation method and the establishment of a model for suitable soybean varieties for Chinese traditional tofu processing[J]. LWT - Food Science and Technology,2020,117:108441. doi: 10.1016/j.lwt.2019.108441
|
[55] |
刘春, 王显生, 麻浩. 大豆种子贮藏蛋白亚基特异种质的蛋白功能性评价[J]. 中国油脂,2008,33(8):35−40.
|
[56] |
孟岩. 亚基缺失特异大豆品种的筛选及β亚基对大豆加工特性的影响[D]. 北京: 中国农业大学, 2004.
|
[57] |
V Poysa, L Woodrow. Stability of soybean seed composition and its effect on soymilk and tofu yield and quality[J]. Food Research International,2002,35(4):337−345. doi: 10.1016/S0963-9969(01)00125-9
|
[58] |
石彦国, 刘琳琳. 大豆蛋白与豆腐品质相关性研究进展[J]. 食品科学技术学报,2018,36(6):1−8. doi: 10.3969/j.issn.2095-6002.2018.06.001
|
[59] |
S Petruccelli, M C Anon. Thermal aggregation of soy protein isolates[J]. Journal of Agricultural and Food Chemistry,1995,43(12):3035−3041. doi: 10.1021/jf00060a009
|
[60] |
Tatsunori, Yamagishi, Atsuko, et al. Isolation and electrophoretic analysis of heat-induced products of mixed soybean 7S and 11S globulins[J]. Agricultural and Biological Chemistry,2014,47(6):1229−1237.
|
[61] |
Fukushima, Danji. Structures of plant storage proteins and their functions[J]. Food Reviews International,1991,7(3):353−381. doi: 10.1080/87559129109540916
|
[62] |
K Kitamura, N Kaizuma. Mutant strains with low level of subunits of 7S globulin in soybean (Glycine max merr.) seed[J]. Japanese Journal of Breeding,1981,31(4):353−359. doi: 10.1270/jsbbs1951.31.353
|
[63] |
K Takahashi, H Banba, A Kikuchi, et al. An induced mutant line lacking the. α. -subunit of. β-conglycinin in soybean (Glycine max (L.) merrill)[J]. Japanese Journal of Breeding,1994,44(1):65−66. doi: 10.1270/jsbbs1951.44.65
|
[64] |
Odanaka H, Kaizuma N. Mutants on soybean storage proteins induced with γ-ray irradiation[J]. Jpn. J. Breed,1989(39):430−431.
|
[65] |
郭顺堂, 孟岩, 张雪梅, 等. 中国大豆蛋白亚基构成分析与缺失部分亚基的特异大豆品种的筛选[J]. 作物学报,2006,32(8):1130−1134. doi: 10.3321/j.issn:0496-3490.2006.08.005
|
[66] |
宋波, 蓝岚, 田福东, 等. 大豆7S球蛋白α'亚基缺失及(α'+α)亚基双缺失品系的回交转育[J]. 作物学报,2012,38(12):2297−2305.
|
[67] |
韩艳婧. 7S α'-亚基缺失型低致敏大豆新材料的选育、评价与应用[D]. 哈尔滨: 东北农业大学, 2017.
|
[68] |
张亚琴. 大豆贮藏蛋白A1aB1b亚基鉴定为具有α-淀粉酶抑制剂活性的研究[D]. 南京: 南京农业大学, 2015.
|
[69] |
李俊英, 孙如建, 李忠峰, 等. 大豆7S球蛋白α'亚基缺失新种质中黄608的分子鉴定[J]. 作物学报,2019,45(1):22−29.
|
[70] |
Yykio Kawamura. Rheological study on the effect of A5 subunit on the gelation characteristics of soybean proteins[J]. Journal of the Agricultural Chemical Society of Japan,1991,55(2):351−355.
|
[71] |
Amir, Malaki, Nik, et al. Effect of soy protein subunit composition and processing conditions on stability and particle size distribution of soymilk[J]. Lwt Food Science and Technology,2009,42(7):1245−1252. doi: 10.1016/j.lwt.2009.03.001
|
[72] |
Xingfei Li, Liyang Chen, Yufei Hua, et al. Effect of preheating-induced denaturation during protein production on the structure and gelling properties of soybean proteins[J]. Food Hydrocolloids,2020,105:105846. doi: 10.1016/j.foodhyd.2020.105846
|
[73] |
拓云, 霍彩琴, 田福东, 等. 致敏蛋白α亚基缺失型大豆氨基酸组成及营养评价[J]. 食品科学,2014,35(9):224−228. doi: 10.7506/spkx1002-6630-201409044
|
[74] |
国博闻, 赵雪, 魏小双, 等. 具有中国大豆遗传背景的7S与11S多亚基缺失型大豆新品系的创制[J]. 作物杂志,2016(2):43−49.
|
[1] | LAI Maojia, MOU Yan, YI Yuwen, FAN Wenjiao, QIAO Xing. Correlation Analysis between Microbial Diversity and Flavor Compounds in Sichuan Fermented Sausage[J]. Science and Technology of Food Industry, 2025, 46(6): 303-314. DOI: 10.13386/j.issn1002-0306.2024040421 |
[2] | SUI Yumeng, WANG Huiping, LIU Jiaqi, KONG Baohua, QIN Ligang, CHEN Qian. Biogenic Amine Formation Based on Microbial Diversity in Fermented Foods: A Review[J]. Science and Technology of Food Industry, 2024, 45(2): 356-363. DOI: 10.13386/j.issn1002-0306.2023020123 |
[3] | Xutao MAI, Wenzhuo WANG, Yuhang ZHENG, Fang LIU, Zhilan SUN, Weimin XU. Effects of Different Packaging Methods on the Microbial Diversity in Chilled Chicken[J]. Science and Technology of Food Industry, 2023, 44(13): 367-374. DOI: 10.13386/j.issn1002-0306.2022090004 |
[4] | ZHAO Jieyu, WEI Tao, QIN Fei, LIU Qian. Analysis of Sensory Quality, Physicochemical Characteristics and Microbial Diversity of Kombucha Beverages[J]. Science and Technology of Food Industry, 2023, 44(1): 172-180. DOI: 10.13386/j.issn1002-0306.2022030072 |
[5] | XU Xiahong, YANG Sha, SHAN Changsong, CHEN Zhigang. Effects of Different Preservation Treatments on Quality of Wet Rice Noodles and Microbial Diversity of Spoiled Samples[J]. Science and Technology of Food Industry, 2021, 42(21): 158-165. DOI: 10.13386/j.issn1002-0306.2021030021 |
[6] | Jing MA, Linlin ZHANG, Shatuo CHAI, Xun WANG, Zhanhong CUI, Lu SUN, Shujie LIU. Study on Microbial Diversity in Milk of Yak and Cattle-Yak in Qinghai-Tibet Plateau Based on High-throughput Sequencing Technology[J]. Science and Technology of Food Industry, 2021, 42(9): 122-128. DOI: 10.13386/j.issn1002-0306.2020080045 |
[7] | XIANG Fan-shu, LIU Xue-ting, DAI Cheng-yang, ZHANG Zhen-dong, GUO Zhuang. Analysis of Microbial Diversity of Rice Wine in Xuanen Area Based on MiSeq High-throughput Sequencing Technology[J]. Science and Technology of Food Industry, 2020, 41(21): 128-132,138. DOI: 10.13386/j.issn1002-0306.2019110207 |
[8] | MA Yan-shi, JIANG Ming, LI Hui, PEI Fang-yi. Analysis of Microbial Diversity of Northeast Soy Sauce Based on High-throughput Sequencing Technology[J]. Science and Technology of Food Industry, 2020, 41(12): 100-105. DOI: 10.13386/j.issn1002-0306.2020.12.016 |
[9] | QIU Wei-hua. Research Advances on Microbial Diversity and Its Analytical Methods of Kombucha[J]. Science and Technology of Food Industry, 2019, 40(24): 311-317. DOI: 10.13386/j.issn1002-0306.2019.24.052 |
[10] | LI Wei-cheng, HOU Qiang-chuan, YU Jie, SUN Zhi-hong, SUN Tian-song. Study on the diversity of microbial in traditional fermented dairy products[J]. Science and Technology of Food Industry, 2018, 39(1): 131-136. DOI: 10.13386/j.issn1002-0306.2018.01.025 |
1. |
李宁洁,景炳年,王伟,刘雨晴,谢晓阳,董跟来,王学方,魏磊. 五月艾营养成分、活性物质及重金属含量测定与分析. 生物技术进展. 2025(01): 102-109 .
![]() | |
2. |
景炳年,常霞,魏磊,谢晓阳,周雍,王志尧,刘雨晴,王伟. 博爱县赤松茸营养成分、生物活性物质及重金属含量分析与评价. 食品工业科技. 2022(04): 278-285 .
![]() | |
3. |
吴孟华,邓静,张英,李杰,黄建香,林泽斌,曹晖. 岭南鲍姑艾(红脚艾)的品种考证. 中药材. 2022(01): 235-241 .
![]() | |
4. |
农彦贤,郝红梅,叶志杰,彭慎,谭冬明,李玉英. 红蓝草主要营养成分分析与评价. 广东化工. 2021(10): 234-237 .
![]() | |
5. |
沈宏桂,刘立萍,罗宏泉,陈慧,贺鹏. ICP-AES法对怀化地区艾草的21种矿质元素分析. 农业与技术. 2021(20): 74-76 .
![]() | |
6. |
梅瑜,徐世强,顾艳,孙铭阳,周芳,李静宇,张闻婷,王继华. 红脚艾蒿的转录组解析. 广东农业科学. 2021(12): 174-180 .
![]() |