FU Hongling, FAN Hongliang, LYU Bo, et al. Research Progress of Soybean Protein Gels at Subunit Level[J]. Science and Technology of Food Industry, 2021, 42(7): 382−389. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020050338.
Citation: FU Hongling, FAN Hongliang, LYU Bo, et al. Research Progress of Soybean Protein Gels at Subunit Level[J]. Science and Technology of Food Industry, 2021, 42(7): 382−389. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020050338.

Research Progress of Soybean Protein Gels at Subunit Level

More Information
  • Received Date: May 27, 2020
  • Available Online: January 27, 2021
  • β-conglycinin (7S globulin) and glycinin (11S globulin) are the main components in soy protein. Processing characteristics of soybean are affected by different subunit compositions of soy protein. Gelling behavior is the subject of this study. In this review, the composition and chemical structure of soy protein, the gelation mechanism of 7S globulin and 11S globulin are described. Meanwhile, the impact of subunit compositions on gel property and research progress of protein subunit-deficiency soybeans are summarized, which provides important theoretical guidance for the development and application of soybean protein products.
  • [1]
    E M Bainy, S M Tosh, M Corredig, et al. Protein subunit composition effects on the thermal denaturation at different stages during the soy protein isolate processing and gelation profiles of soy protein isolates[J]. Journal of the American Oil Chemists Society,2008,85(6):581−590. doi: 10.1007/s11746-008-1238-6
    [2]
    Nogueira, Amanda de C, Steel C J. Protein enrichment of biscuits: A review[J]. Food Reviews International,2018,34(8):796−809. doi: 10.1080/87559129.2018.1441299
    [3]
    W Chao, W Jiamei, Y Xinyu, et al. Effect of partial replacement of water-soluble cod proteins by soy proteins on the heat-induced aggregation and gelation properties of mixed protein systems[J]. Food Hydrocolloids,2020,100:105417. doi: 10.1016/j.foodhyd.2019.105417
    [4]
    刘强, 刘安让, 赵亚萍. 大豆分离蛋白在乳制品中的应用发展[J]. 食品工业科技,2008,29(8):287−288.
    [5]
    Sandra R T, Kelly A T, Carson Lea Ann, et al. Isolated soy protein consumption reduces urinary albumin excretion and improves the serum lipid profile in men with type 2 diabetes mellitus and nephropathy[J]. Journal of Nutrition,2004,134(8):1874−1880. doi: 10.1093/jn/134.8.1874
    [6]
    Sam J Bhathena, Ali A Ali, Christian H, et al. Dietary flaxseed meal is more protective than soy protein concentrate against hypertriglyceridemia and steatosis of the liver in an animal model of obesity[J]. Journal of the American College of Nutrition,2003,22(2):157−164. doi: 10.1080/07315724.2003.10719289
    [7]
    Inoue Nao, Nagao Koji, Sakata Kotaro, et al. Screening of soy protein-derived hypotriglyceridemic di-peptides in vitro and in vivo[J]. Lipids in Health and Disease,2011,10(1):85. doi: 10.1186/1476-511X-10-85
    [8]
    Cynthia, Chatterjee, Liu Jiajie, et al. The α' subunit of β-conglycinin and various glycinin subunits of soy are not required to modulate hepatic lipid metabolism in rats[J]. European Journal of Nutrition,2017,57(3):1157−1168.
    [9]
    谭慧. 高压处理对大豆分离蛋白—多糖体系功能特性及结构影响研究[D]. 哈尔滨: 东北农业大学, 2015.
    [10]
    Yu Cheng, Prince Ofori Donkor, Xiaofeng Ren, et al. Effect of ultrasound pretreatment with mono-frequency and simultaneous dual frequency on the mechanical properties and microstructure of whey protein emulsion gels[J]. Food Hydrocolloids,2019,89(4):434−442.
    [11]
    曾剑华, 杨杨, 刘琳琳, 等. 热处理过程中大豆11S球蛋白解离缔合行为研究进展[J]. 食品科学,2019,40(11):303−312. doi: 10.7506/spkx1002-6630-20180614-274
    [12]
    Wu Chao, Hua Yufei, Chen Yeming, et al. Effect of temperature, ionic strength and 11S ratio on the rheological properties of heat-induced soy protein gels in relation to network proteins content and aggregates size[J]. Food Hydrocolloids,2017,66(5):389−395.
    [13]
    Yamagishi T, Takahashi N, Kondo N, et al. Gel formation mechanism of soybean glycinin (I): Polymerization of acidic subunit as a trigger of thermal gelation[J]. Reseach Reports National Institute of Technology Hachinohe College,2018,41:55−59.
    [14]
    Yamagishi T, Takahashi N, Tabata H, et al. Gel formation mechanism of soybean glycinin (II): Evidence for polymerization of acidic subunit as a thermal gelation initiator[J]. Research Reports Hachinohe Technical College,2018,41:73−78.
    [15]
    Pavlicevic M Z, Tomic M D, Djonlagic J A, et al. Evaluation of variation in protein composition on solubility, emulsifying and gelling properties of soybean genotypes synthesizing β' subunit[J]. Journal of the American Oil Chemists' Society,2018,95(2):123−134. doi: 10.1002/aocs.12002
    [16]
    Nik A M, Alexander M, Poysa V, et al. Effect of soy protein subunit composition on the rheological properties of soymilk during acidification[J]. Food Biophysics,2011,6(1):26−36. doi: 10.1007/s11483-010-9172-1
    [17]
    Preece K E, Hooshyar N, Zuidam N J. Whole soybean protein extraction processes: A review[J]. Innovative Food Science and Emerging Technologies,2017,43:163−172. doi: 10.1016/j.ifset.2017.07.024
    [18]
    Zhang, Yan, Chen, et al. Complexation of thermally-denatured soybean protein isolate with anthocyanins and its effect on the protein structure and in vitro digestibility[J]. Food Research International,2018,106:619−625. doi: 10.1016/j.foodres.2018.01.040
    [19]
    Liu, KeShun. Soybeans chemistry and nutritional value of soybean components[J]. Soybeans,1997:25−113.
    [20]
    Shi, Junyou, Gao, et al. The effects of thermal-acid treatment and crosslinking on the water resistance of soybean protein[J]. Industrial Crops and Products,2015,74:122−131. doi: 10.1016/j.indcrop.2015.04.026
    [21]
    M A Moreira, M A Hermodson, B A Larkins, et al. Partial characterization of the acidic and basic polypeptides of glycinin[J]. Journal of Biological Chemistry,1979,254(19):9921−9926. doi: 10.1016/S0021-9258(19)83605-0
    [22]
    Shi Meng, Sam Chang, Anne M Gillen, et al. Protein and quality analyses of accessions from the USDA soybean germplasm collection for tofu production[J]. Food Chemistry,2016,213(12):31−39.
    [23]
    V H Thanh, Kazuo Shibasaki. Major proteins of soybean seeds. Reconstitution of. β. -conglycinin from its subunits[J]. Journal of Agricultural & Food Chemistry,1978,26(3):695−698.
    [24]
    Shimpei, Morita, Masami, et al. Purification, characterization, and crystallization of single molecular species of β-conglycinin from soybean seeds[J]. Bioscience, Biotechnology, and Biochemistry,2014,60(5):866−873.
    [25]
    Y Maruyama, N Maruyama, B Mikami, et al. Structure of the core region of the soybean β-conglycinin α′ subunit[J]. Acta Crystallographica,2004,60(2):289−297.
    [26]
    N Maruyama, M Adachi, K Takahashi, et al. Crystal structures of recombinant and native soybean β-conglycinin β homotrimers[J]. European Journal of Biochemistry,2001,268(12):3595−3604. doi: 10.1046/j.1432-1327.2001.02268.x
    [27]
    Adachi M, Kanamori J, MasudaT, et al. Crystal structure of soybean 11S globulin: Glycinin A3B4 homohexamer[J]. Proceedings of the National Academy of Sciences,2003,100(12):7395−7400. doi: 10.1073/pnas.0832158100
    [28]
    M Adachi, Ho Chunying, S Utsumi. Effects of designed sulfhydryl groups and disulfide bonds into soybean proglycinin on its structural stability and heat-induced gelation[J]. Journal of Agricultural and Food Chemistry,2004,52(18):5717−5723. doi: 10.1021/jf0496595
    [29]
    R A Badley, D Atkinson, H Hauser, et al. The structure, physical and chemical properties of the soy bean protein glycinin[J]. Biochimica Et Biophysica Acta,1976,412(2):214−228.
    [30]
    I C Peng, D W Quass, W R Dayton, et al. The physicochemical and functional properties of soybean 11S globulin - a review[J]. Cereal Chemistry,1984,61(6):480−490.
    [31]
    M Tezuka, K Yagasaki, T Ono. Changes in characters of soybean glycinin groups I, IIa, and IIb caused by heating[J]. Journal of Agricultural and Food Chemistry,2004,52(6):1693−1699. doi: 10.1021/jf030353s
    [32]
    V Poysa, L Woodrow, K Yu. Effect of soy protein subunit composition on tofu quality[J]. Food Research International,2006,39(3):309−317. doi: 10.1016/j.foodres.2005.08.003
    [33]
    M Adachi, Y Takenaka, Andrew B Gidamis, et al. Crystal structure of soybean proglycinin A1aB1b homotrimer[J]. Journal of Molecular Biology,2001,305(2):291−305. doi: 10.1006/jmbi.2000.4310
    [34]
    李玉珍, 肖怀秋, 兰立新. 大豆分离蛋白功能特性及其在食品工业中的应用[J]. 中国食品添加剂,2008(1):121−124, 109. doi: 10.3969/j.issn.1006-2513.2008.01.027
    [35]
    田琨, 管娟, 邵正中, 等. 大豆分离蛋白结构与性能[J]. 化学进展,2008,20(4):565−573.
    [36]
    Chen N, Zhao M, Chassenieux C, et al. The effect of adding NaCl on thermal aggregation and gelation of soy protein isolate[J]. Food Hydrocolloids,2017,70(9):88−95.
    [37]
    Chen N, Nicolai T, Chassenieux C, et al. pH and ionic strength responsive core-shell protein microgels fabricated via simple coacervation of soy globulins[J]. Food Hydrocolloids,2020,105:105853. doi: 10.1016/j.foodhyd.2020.105853
    [38]
    Jacoba M S Renkema, Harry Gruppen, Ton Van Vliet. Influence of pH and ionic strength on heat-induced formation and rheological properties of soy protein gels in relation to denaturation and their protein compositions[J]. Journal of Agricultural and Food Chemistry,2002,50(21):6064−6071. doi: 10.1021/jf020061b
    [39]
    T Nakamura, S Utsumi, T Mori. Network structure formation in thermally induced gelation of glycinin[J]. Journal of Agricultural and Food Chemistry,1984,32(2):349−352. doi: 10.1021/jf00122a042
    [40]
    Peng X Y, Ren C G, Guo S T. Particle formation and gelation of soymilk: Effect of heat[J]. Trends in Food Science and Technology,2016,54:138−147. doi: 10.1016/j.jpgs.2016.06.005
    [41]
    Guo Jian, Yang Xiaoquan, He Xiuting, et al. Limited aggregation behavior of β-conglycinin and its terminating effect on glycinin aggregation during heating at pH 7.0[J]. Journal of Agricultural and Food Chemistry,2012,60(14):3782−3791. doi: 10.1021/jf300409y
    [42]
    Guo Jian, Zhang Ye, Yang Xiaoquan. A novel enzyme cross-linked gelation method for preparing food globular protein-based transparent hydrogel[J]. Food Hydrocolloids,2012,26(1):277−285. doi: 10.1016/j.foodhyd.2011.06.005
    [43]
    He X T, Yuan D B, Wang J M, et al. Thermal aggregation behaviour of soy protein: Characteristics of different polypeptides and subunits[J]. Journal of the Science of Food and Agriculture,2016,96(4):1121−1131. doi: 10.1002/jsfa.7184
    [44]
    Andrew T James, Aijun Yang. Interactions of protein content and globulin subunit composition of soybean proteins in relation to tofu gel properties[J]. Food Chemistry,2016,194(5):284−289.
    [45]
    Jacoba M S Renkema, Catriona M M Lakemond, Harmen H J De Jongh, et al. The effect of pH on heat denaturation and gel forming properties of soy proteins[J]. Journal of Biotechnology,2000,79(3):223−230. doi: 10.1016/S0168-1656(00)00239-X
    [46]
    T Nakamura, S Utsumi, T Mori. Interactions during heat-induced gelation in a mixed system of soybean 7S and 11S globulins[J]. Agricultural and Biological Chemistry,1986,50(10):2429−2435.
    [47]
    Utsumi S, Damodaran S, Kinsella J E. Heat-induced interactions between soybean proteins: preferential association of 11S basic subunits and. β. subunits of 7S[J]. Journal of Agricultural and Food Chemistry,1984,32(6):1406−1412. doi: 10.1021/jf00126a047
    [48]
    祝祥威, 黄行健, 赵琪, 等. 亚基水平上大豆蛋白改性修饰的研究进展[J]. 食品科学,2012,33(23):388−392.
    [49]
    陈海敏, 华欲飞. 品种差异对大豆蛋白质功能性的影响[J]. 中国油脂,2000,25(6):178−180. doi: 10.3321/j.issn:1003-7969.2000.06.054
    [50]
    袁德保. 大豆蛋白热聚集行为及其机理研究[D]. 广州: 华南理工大学, 2010.
    [51]
    张国敏. 种子贮藏蛋白亚基缺失大豆种质的鉴定及其蛋白质功能性评价与α亚基缺失的分子机制[D]. 南京: 南京农业大学, 2014.
    [52]
    B M Salleh M R, N Maruyama, K Takahashi, et al. Gelling properties of soybean β-conglycinin having different subunit compositions[J]. Bioscience Biotechnology and Biochemistry,2014,68(5):1091−1096.
    [53]
    周宇锋, 宋莲军, 乔明武, 等. 大豆蛋白亚基与豆腐的质构特性的相关性[J]. 中国粮油学报,2014,29(4):22−25, 31.
    [54]
    Wang F, Meng J, Sun L, et al. Study on the tofu quality evaluation method and the establishment of a model for suitable soybean varieties for Chinese traditional tofu processing[J]. LWT - Food Science and Technology,2020,117:108441. doi: 10.1016/j.lwt.2019.108441
    [55]
    刘春, 王显生, 麻浩. 大豆种子贮藏蛋白亚基特异种质的蛋白功能性评价[J]. 中国油脂,2008,33(8):35−40.
    [56]
    孟岩. 亚基缺失特异大豆品种的筛选及β亚基对大豆加工特性的影响[D]. 北京: 中国农业大学, 2004.
    [57]
    V Poysa, L Woodrow. Stability of soybean seed composition and its effect on soymilk and tofu yield and quality[J]. Food Research International,2002,35(4):337−345. doi: 10.1016/S0963-9969(01)00125-9
    [58]
    石彦国, 刘琳琳. 大豆蛋白与豆腐品质相关性研究进展[J]. 食品科学技术学报,2018,36(6):1−8. doi: 10.3969/j.issn.2095-6002.2018.06.001
    [59]
    S Petruccelli, M C Anon. Thermal aggregation of soy protein isolates[J]. Journal of Agricultural and Food Chemistry,1995,43(12):3035−3041. doi: 10.1021/jf00060a009
    [60]
    Tatsunori, Yamagishi, Atsuko, et al. Isolation and electrophoretic analysis of heat-induced products of mixed soybean 7S and 11S globulins[J]. Agricultural and Biological Chemistry,2014,47(6):1229−1237.
    [61]
    Fukushima, Danji. Structures of plant storage proteins and their functions[J]. Food Reviews International,1991,7(3):353−381. doi: 10.1080/87559129109540916
    [62]
    K Kitamura, N Kaizuma. Mutant strains with low level of subunits of 7S globulin in soybean (Glycine max merr.) seed[J]. Japanese Journal of Breeding,1981,31(4):353−359. doi: 10.1270/jsbbs1951.31.353
    [63]
    K Takahashi, H Banba, A Kikuchi, et al. An induced mutant line lacking the. α. -subunit of. β-conglycinin in soybean (Glycine max (L.) merrill)[J]. Japanese Journal of Breeding,1994,44(1):65−66. doi: 10.1270/jsbbs1951.44.65
    [64]
    Odanaka H, Kaizuma N. Mutants on soybean storage proteins induced with γ-ray irradiation[J]. Jpn. J. Breed,1989(39):430−431.
    [65]
    郭顺堂, 孟岩, 张雪梅, 等. 中国大豆蛋白亚基构成分析与缺失部分亚基的特异大豆品种的筛选[J]. 作物学报,2006,32(8):1130−1134. doi: 10.3321/j.issn:0496-3490.2006.08.005
    [66]
    宋波, 蓝岚, 田福东, 等. 大豆7S球蛋白α'亚基缺失及(α'+α)亚基双缺失品系的回交转育[J]. 作物学报,2012,38(12):2297−2305.
    [67]
    韩艳婧. 7S α'-亚基缺失型低致敏大豆新材料的选育、评价与应用[D]. 哈尔滨: 东北农业大学, 2017.
    [68]
    张亚琴. 大豆贮藏蛋白A1aB1b亚基鉴定为具有α-淀粉酶抑制剂活性的研究[D]. 南京: 南京农业大学, 2015.
    [69]
    李俊英, 孙如建, 李忠峰, 等. 大豆7S球蛋白α'亚基缺失新种质中黄608的分子鉴定[J]. 作物学报,2019,45(1):22−29.
    [70]
    Yykio Kawamura. Rheological study on the effect of A5 subunit on the gelation characteristics of soybean proteins[J]. Journal of the Agricultural Chemical Society of Japan,1991,55(2):351−355.
    [71]
    Amir, Malaki, Nik, et al. Effect of soy protein subunit composition and processing conditions on stability and particle size distribution of soymilk[J]. Lwt Food Science and Technology,2009,42(7):1245−1252. doi: 10.1016/j.lwt.2009.03.001
    [72]
    Xingfei Li, Liyang Chen, Yufei Hua, et al. Effect of preheating-induced denaturation during protein production on the structure and gelling properties of soybean proteins[J]. Food Hydrocolloids,2020,105:105846. doi: 10.1016/j.foodhyd.2020.105846
    [73]
    拓云, 霍彩琴, 田福东, 等. 致敏蛋白α亚基缺失型大豆氨基酸组成及营养评价[J]. 食品科学,2014,35(9):224−228. doi: 10.7506/spkx1002-6630-201409044
    [74]
    国博闻, 赵雪, 魏小双, 等. 具有中国大豆遗传背景的7S与11S多亚基缺失型大豆新品系的创制[J]. 作物杂志,2016(2):43−49.
  • Related Articles

    [1]LAI Maojia, MOU Yan, YI Yuwen, FAN Wenjiao, QIAO Xing. Correlation Analysis between Microbial Diversity and Flavor Compounds in Sichuan Fermented Sausage[J]. Science and Technology of Food Industry, 2025, 46(6): 303-314. DOI: 10.13386/j.issn1002-0306.2024040421
    [2]SUI Yumeng, WANG Huiping, LIU Jiaqi, KONG Baohua, QIN Ligang, CHEN Qian. Biogenic Amine Formation Based on Microbial Diversity in Fermented Foods: A Review[J]. Science and Technology of Food Industry, 2024, 45(2): 356-363. DOI: 10.13386/j.issn1002-0306.2023020123
    [3]Xutao MAI, Wenzhuo WANG, Yuhang ZHENG, Fang LIU, Zhilan SUN, Weimin XU. Effects of Different Packaging Methods on the Microbial Diversity in Chilled Chicken[J]. Science and Technology of Food Industry, 2023, 44(13): 367-374. DOI: 10.13386/j.issn1002-0306.2022090004
    [4]ZHAO Jieyu, WEI Tao, QIN Fei, LIU Qian. Analysis of Sensory Quality, Physicochemical Characteristics and Microbial Diversity of Kombucha Beverages[J]. Science and Technology of Food Industry, 2023, 44(1): 172-180. DOI: 10.13386/j.issn1002-0306.2022030072
    [5]XU Xiahong, YANG Sha, SHAN Changsong, CHEN Zhigang. Effects of Different Preservation Treatments on Quality of Wet Rice Noodles and Microbial Diversity of Spoiled Samples[J]. Science and Technology of Food Industry, 2021, 42(21): 158-165. DOI: 10.13386/j.issn1002-0306.2021030021
    [6]Jing MA, Linlin ZHANG, Shatuo CHAI, Xun WANG, Zhanhong CUI, Lu SUN, Shujie LIU. Study on Microbial Diversity in Milk of Yak and Cattle-Yak in Qinghai-Tibet Plateau Based on High-throughput Sequencing Technology[J]. Science and Technology of Food Industry, 2021, 42(9): 122-128. DOI: 10.13386/j.issn1002-0306.2020080045
    [7]XIANG Fan-shu, LIU Xue-ting, DAI Cheng-yang, ZHANG Zhen-dong, GUO Zhuang. Analysis of Microbial Diversity of Rice Wine in Xuanen Area Based on MiSeq High-throughput Sequencing Technology[J]. Science and Technology of Food Industry, 2020, 41(21): 128-132,138. DOI: 10.13386/j.issn1002-0306.2019110207
    [8]MA Yan-shi, JIANG Ming, LI Hui, PEI Fang-yi. Analysis of Microbial Diversity of Northeast Soy Sauce Based on High-throughput Sequencing Technology[J]. Science and Technology of Food Industry, 2020, 41(12): 100-105. DOI: 10.13386/j.issn1002-0306.2020.12.016
    [9]QIU Wei-hua. Research Advances on Microbial Diversity and Its Analytical Methods of Kombucha[J]. Science and Technology of Food Industry, 2019, 40(24): 311-317. DOI: 10.13386/j.issn1002-0306.2019.24.052
    [10]LI Wei-cheng, HOU Qiang-chuan, YU Jie, SUN Zhi-hong, SUN Tian-song. Study on the diversity of microbial in traditional fermented dairy products[J]. Science and Technology of Food Industry, 2018, 39(1): 131-136. DOI: 10.13386/j.issn1002-0306.2018.01.025
  • Cited by

    Periodical cited type(6)

    1. 李宁洁,景炳年,王伟,刘雨晴,谢晓阳,董跟来,王学方,魏磊. 五月艾营养成分、活性物质及重金属含量测定与分析. 生物技术进展. 2025(01): 102-109 .
    2. 景炳年,常霞,魏磊,谢晓阳,周雍,王志尧,刘雨晴,王伟. 博爱县赤松茸营养成分、生物活性物质及重金属含量分析与评价. 食品工业科技. 2022(04): 278-285 . 本站查看
    3. 吴孟华,邓静,张英,李杰,黄建香,林泽斌,曹晖. 岭南鲍姑艾(红脚艾)的品种考证. 中药材. 2022(01): 235-241 .
    4. 农彦贤,郝红梅,叶志杰,彭慎,谭冬明,李玉英. 红蓝草主要营养成分分析与评价. 广东化工. 2021(10): 234-237 .
    5. 沈宏桂,刘立萍,罗宏泉,陈慧,贺鹏. ICP-AES法对怀化地区艾草的21种矿质元素分析. 农业与技术. 2021(20): 74-76 .
    6. 梅瑜,徐世强,顾艳,孙铭阳,周芳,李静宇,张闻婷,王继华. 红脚艾蒿的转录组解析. 广东农业科学. 2021(12): 174-180 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (512) PDF downloads (45) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return