LI Xia, XIONG Feng, QIN Xian-xing, LI Jia-shu, CUI Meng-jia, HAO Zai-bin, CHEN Hui-ying. Optimization of Microwave-assisted Extraction Process of Polysaccharide from Passiflora edulis Sims Peel and Evaluation of Antioxidant Activity in vitro[J]. Science and Technology of Food Industry, 2018, 39(15): 141-146. DOI: 10.13386/j.issn1002-0306.2018.15.026
Citation: LI Xia, XIONG Feng, QIN Xian-xing, LI Jia-shu, CUI Meng-jia, HAO Zai-bin, CHEN Hui-ying. Optimization of Microwave-assisted Extraction Process of Polysaccharide from Passiflora edulis Sims Peel and Evaluation of Antioxidant Activity in vitro[J]. Science and Technology of Food Industry, 2018, 39(15): 141-146. DOI: 10.13386/j.issn1002-0306.2018.15.026

Optimization of Microwave-assisted Extraction Process of Polysaccharide from Passiflora edulis Sims Peel and Evaluation of Antioxidant Activity in vitro

More Information
  • Received Date: November 12, 2017
  • Available Online: November 23, 2020
  • Response surface methodology was applied to optimize the microwave-assisted extraction process of polysaccharide from Passiflora edulis Sims peel and its antioxidant activities in vitro were evaluated. On the basis of single factor test,the ratio of raw material weight to water volume,the extraction time,the microwave power were analyzed and optimized by the Box-Behnken design. The optimized parameters of the microwave-assisted extraction technology were obtained as follows:the ratio of raw material weight to water volume was 1∶27;the extraction time was 3.4 min;the microwave power was 420 W and the extraction rate of polysaccharide was 14.12%±0.41%,which was 1.5 times of that of traditional water bath extraction. Antioxidant activities in vitro of polysaccharide indicated that the DPPH· and ·OH scavenging rates of polysaccharide were 74.02% and 14.41% respectively when the concentration was at 1.0 mg/mL,and the IC50values of 0.374 and 61.06 mg/mL,respectively.
  • Related Articles

    [1]YOU Jiawei, HAN Ruyi, CHEN Yuexiao, CHEN Fen, LIU Yuan, LI Mingyue, LI Hongying, LI Yiyang, SUN Yafeng, TIAN Su. Protective Effect of Dandelion Jujube Juice on D-galactose-induced Liver Injury in Rats[J]. Science and Technology of Food Industry, 2024, 45(22): 331-337. DOI: 10.13386/j.issn1002-0306.2024010068
    [2]LI Xiaoli, SU Jianqing, LI Ying, XUE Jiaojiao, ZHANG Rui, DING Yi, ZHANG Xueping, FENG Yichao, WANG Xueyan, CHU Xiuling. Protective Effects of Selenated Acanthopanax senticosus Polysaccharide Against D-Galactose-induced Oxidative Damage in Mice[J]. Science and Technology of Food Industry, 2024, 45(16): 368-375. DOI: 10.13386/j.issn1002-0306.2023090270
    [3]LIU Wang, BAI Jinbo, ZHANG Wangjuan, LIU Chunyang, LI Muzi, ZHANG Jinhe, XU Guobing, XIE Songzi. Study on the Physicochemical Properties of Polysaccharide from Polygonatum sibiricum and Its Protective Effect on D-Galactose-Induced Oxidative Damage in Mice[J]. Science and Technology of Food Industry, 2023, 44(18): 425-433. DOI: 10.13386/j.issn1002-0306.2022100250
    [4]ZHAO Yuezhu, JIN Xin, ZHANG Yunan, LI Jingshuang, YU Yang. Protective Effect of Aloe Polysaccharide on Oxidative Stress Injury of HepG2 Cells Induced by D-galactose[J]. Science and Technology of Food Industry, 2023, 44(1): 405-412. DOI: 10.13386/j.issn1002-0306.2022040037
    [5]BAI Dongwen, BAO Xiaowei, ZENG Lanjun, LIU Xiaolu, LI Yixin, SUN Jiali, JIN Weiquan, JIANG Junfeng. Effects of Cistanche deserticola Extract on D-Galactose-Induced Aging Model Mice[J]. Science and Technology of Food Industry, 2022, 43(20): 380-386. DOI: 10.13386/j.issn1002-0306.2022010264
    [6]BAO Xiao-wei, LI Jian-ying, REN Wei, WEI Chen-ye, ZENG Lan-jun, ZHANG Ya-tao. Antioxidant Effects of Hippophae rhamnoides Polysaccharide on Aging Mouse Induced by D-galactose[J]. Science and Technology of Food Industry, 2020, 41(4): 293-297,306. DOI: 10.13386/j.issn1002-0306.2020.04.050
    [7]LI Yu-xin, SHENG Yu, DU Pei-ge, AN Li-ping, YANG Ying-ying, GUO Chang-chun, WANG Jia-qi. Extraction of Agaricus blazei Polysaccharides and Its Immunomodulatory Effect on D-galactose-induced Aging Mice[J]. Science and Technology of Food Industry, 2019, 40(12): 295-299,308. DOI: 10.13386/j.issn1002-0306.2019.12.048
    [8]BI Kai-yuan, LI Na, CUI Shan-shan, Clint Taonaishe Chimbangu, SHANG Hong-li. Protective Effects of Red Raspberry Anthocyanins on D-galactose Induced Mice Aging[J]. Science and Technology of Food Industry, 2019, 40(6): 279-284. DOI: 10.13386/j.issn1002-0306.2019.06.047
    [9]ZHAO Xin, YI Ruo-kun, SUN Peng, SONG Jia-le. Improvement effects of Kuding tea flavonoids extracts on D-galactose induced mice aging[J]. Science and Technology of Food Industry, 2017, (16): 303-308. DOI: 10.13386/j.issn1002-0306.2017.16.057
    [10]JIN Sheng-lang, QUE Fei, WANG Ying, WEI Xiao-xiao. Anti-aging effect of total polysaccharide from Dendranthema morifolium on aging mouse induced by D-galactose[J]. Science and Technology of Food Industry, 2015, (10): 349-351. DOI: 10.13386/j.issn1002-0306.2015.10.065
  • Cited by

    Periodical cited type(3)

    1. 邹婕,杨漫漫,胡晓亮,田志革. 沙门氏菌快速检测技术研究进展. 质量安全与检验检测. 2024(02): 73-78 .
    2. 牛会敏,焦强,李若菡,刘智勇. 学校食堂餐饮食品加工过程致病性微生物监测结果. 中国学校卫生. 2024(06): 895-898 .
    3. 孙千雪,周炳武,王婷,蔡琳雅,胡珊珊,刘晔. 基于分子生物学方法的食品中肠出血性大肠杆菌O157∶H7检测技术研究进展. 粮食与油脂. 2024(11): 6-13 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (182) PDF downloads (9) Cited by(4)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return