• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020
路涵,方婷,牛晓旭,等. 新型α-葡萄糖苷酶Aga432分子改造及酶学性质分析[J]. 食品工业科技,xxxx,x(x):1−9. doi: 10.13386/j.issn1002-0306.2024100117.
引用本文: 路涵,方婷,牛晓旭,等. 新型α-葡萄糖苷酶Aga432分子改造及酶学性质分析[J]. 食品工业科技,xxxx,x(x):1−9. doi: 10.13386/j.issn1002-0306.2024100117.
LU Han, FANG Ting, NIU Xiaoxu, et al. Molecular Modification and Enzymatic Properties of the Novel α-Glucosidase Aga432[J]. Science and Technology of Food Industry, xxxx, x(x): 1−9. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024100117.
Citation: LU Han, FANG Ting, NIU Xiaoxu, et al. Molecular Modification and Enzymatic Properties of the Novel α-Glucosidase Aga432[J]. Science and Technology of Food Industry, xxxx, x(x): 1−9. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024100117.

新型α-葡萄糖苷酶Aga432分子改造及酶学性质分析

Molecular Modification and Enzymatic Properties of the Novel α-Glucosidase Aga432

  • 摘要: 本研究旨在从类芽孢杆菌(Paenibacillus sp.)中克隆新型α-葡萄糖苷酶Aga432基因并通过定点突变提高α-葡萄糖苷酶Aga432的活性。从Paenibacillus sp.全基因组中获得表达α-葡萄糖苷酶的基因片段,进行序列分析,通过同源建模与分子对接并构建基因工程菌获得8株正向突变菌株,对重组Aga432和相对活性最高的正向突变体AT-2进行酶学性质研究,并探究重组α-葡萄糖苷酶Aga432、AT-2对生物膜的分散作用,评价其对小鼠胚胎成纤维细胞的毒性。结果表明,Aga432比活力为45.05 U/mg,突变体AT-2比活力为84.09 U/mg。与Aga432相比,AT-2的最适反应温度、最适反应pH改变并不明显,热稳定性有较大的提高,并且在酸性条件下较为稳定。突变体AT-2的Km为Aga432的1.87倍,Vmax值为Aga432的3.19倍,Kcat值为Aga432的2.33倍,Kcat/Km值为Aga432的1.07倍。体外细胞实验表明,15.0~30.0 μg/mL的Aga432、AT-2对细胞无明显毒性作用,具有良好的细胞相容性。生物膜分散作用结果表明,10.0~50.0 μg/mL浓度的两种重组α-葡萄糖苷酶对细菌生物膜具有显著的分散作用。本研究通过分子改造提升α-葡萄糖苷酶Aga432的热稳定性,为开发新型α-葡萄糖苷酶以及后续定向改造研究提供了基础和参考依据。

     

    Abstract: This study aimed to clone the novel α-glucosidase gene Aga432 from Paenibacillus sp. and enhance its catalytic activity through site-directed mutagenesis. A gene fragment encoding α-glucosidase was successfully amplified from the genomic DNA of Paenibacillus sp., comprehensive sequence analysis was performed, and homology modeling and molecular docking were employed to construct gene-engineered strains. Eight positive mutant strains were identified, among which the enzymatic properties of recombinant Aga432 and the highest relative activity mutant AT-2 were characterized. Additionally, the dispersing effects of recombinant α-glucosidases Aga432 and AT-2 on biofilms were explored, and their toxicity to mouse embryo fibroblasts was evaluated. The results revealed that the specific activity of Aga432 was 45.05 U/mg, while the mutant AT-2 exhibited a significantly enhanced specific activity of 84.09 U/mg. Although the optimal reaction temperature and pH for AT-2 were essentially unaltered relative to Aga432, its thermal stability was significantly enhanced, and it exhibited heightened stability under acidic conditions. The Km of mutant AT-2 was 1.87 times that of Aga432, the Vmax was 3.19 times, the Kcat was 2.33 times, and the Kcat/Km was 1.07 times that of Aga432. In vitro cellular assays indicated that Aga432 and AT-2 at concentrations of 15.0-30.0 μg/mL were non-toxic and exhibited good cell compatibility. Biofilm dispersal assays demonstrated that both recombinant α-glucosidases at concentrations ranging from 10.0 to 50.0 μg/mL significantly dispersed bacterial biofilms. The thermostability of α-glucosidase Aga432 was successfully enhanced through molecular modification in this study, laying a foundation for the development of novel α-glucosidases and providing a reference for future targeted modification research.

     

/

返回文章
返回