• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020
王桐,王雪青,田亚凝,等. 粒径对青稞麸皮结构、理化及功能特性的影响[J]. 食品工业科技,2025,46(3):1−9. doi: 10.13386/j.issn1002-0306.2024010327.
引用本文: 王桐,王雪青,田亚凝,等. 粒径对青稞麸皮结构、理化及功能特性的影响[J]. 食品工业科技,2025,46(3):1−9. doi: 10.13386/j.issn1002-0306.2024010327.
WANG Tong, WANG Xueqing, TIAN Yaning, et al. Effect of Particle Size on Structural, Physicochemical and Functional Properties of Highland Barley Bran[J]. Science and Technology of Food Industry, 2025, 46(3): 1−9. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024010327.
Citation: WANG Tong, WANG Xueqing, TIAN Yaning, et al. Effect of Particle Size on Structural, Physicochemical and Functional Properties of Highland Barley Bran[J]. Science and Technology of Food Industry, 2025, 46(3): 1−9. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024010327.

粒径对青稞麸皮结构、理化及功能特性的影响

Effect of Particle Size on Structural, Physicochemical and Functional Properties of Highland Barley Bran

  • 摘要: 为研究粒径变化对青稞麸皮的结构、理化及功能特性的影响,本研究采用了不同强度的气流冲击磨(Airflow impact milling,AFIM)对粗青稞麸皮(Coarse highland barley bran,CHB)进行碾磨。获得了平均粒径为69.04 µm的中青稞麸皮(Medium highland barley bran,MHB)、58.85 µm的细青稞麸皮(Fine highland barley bran,FHB)和32.04 µm的超微青稞麸皮(Ultrafine highland barley bran,UHB)。从粒径分布、微观结构、理化组成、孔隙特征以及功能特性等方面对这四种样品进行了多重表征。研究结果表明:随着青稞麸皮的粒径减小,部分不溶性膳食纤维(Insoluble dietary fiber,IDF)转化为可溶性膳食纤维(Soluble dietary fiber,SDF),导致SDF在总膳食纤维中的比例由7.18%(CHB)增加到8.50%(UHB)。显微结果与孔隙特征研究显示,随着粒径减小,青稞麸皮的堆积状态变得更加紧密,50 nm~10 µm微孔在青稞麸皮孔隙中逐渐占据主导地位,从CHB组的31%提高至UHB组的69%。麸皮的组成和结构变化影响了其持水力、持油力等水合特性,相较于CHB,UHB的这两个指标分别降低了21%与7.64%。体外葡萄糖吸附实验表明,随着粒径减小,青稞麸皮对高浓度葡萄糖的吸附能力和抑制扩散的能力增强。综上所述,气流冲击磨通过物理改性有效降低了青稞麸皮的粒径分布,同时显著改变了麸皮的化学组成、微观结构、孔隙结构和颗粒间堆积状态,进而影响了其理化及功能特性的发挥。

     

    Abstract: In this study, airflow impact milling (AFIM) with different intensity was utilized to mill coarse highland barley bran (CHB) in order to investigate the effects of particle size on the structure, physicochemical, and functional characteristics of the bran. Medium highland barley bran (MHB) with an average particle size of 69.04 µm, fine highland barley bran (FHB) with a particle size of 58.85 µm, and ultrafine highland barley bran (UHB) with a particle size of 32.04 µm were obtained. These parameters of four samples were then analyzed in terms of particle size distribution, microstructure, physicochemical composition, pore characteristics, and functional properties. The results indicated that as the particle size of highland barley bran decreased, a portion of insoluble dietary fiber (IDF) transformed into soluble dietary fiber (SDF), leading to an increase in the proportion of SDF in the total dietary fiber from 7.18% (CHB) to 8.50% (UHB). Microscopic and pore characteristic studies revealed that with the reduction in particle size, the packing state of highland barley bran became more compact, and the micro-pores ranging from 50 nm to 10 µm gradually dominated the bran's pore structure, increasing from 31% in the CHB group to 69% in the UHB group. The changes in composition and structure of the bran influenced its water-holding capacity, oil-holding capacity, and other hydration properties. Compared to CHB, UHB exhibited a reduction of 21% in water-holding capacity and 7.64% in oil-holding capacity. In vitro glucose adsorption experiments demonstrated that as the particle size decreased, highland barley bran exhibited enhanced adsorption ability and inhibition of diffusion for high concentrations of glucose. In conclusion, airflow impact milling, a physical modification, effectively reduced the particle size distribution of highland barley bran and significantly altered its chemical composition, microstructure, pore structure, and particle packing state, thereby affecting its physicochemical and functional characteristics.

     

/

返回文章
返回