Processing math: 100%
  • EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

耐热小麦阿拉伯木聚糖酶Xyn11A在全麦面包品质改良中的应用

张玉玺, 刘星宇, 齐肖亚, 饶欢, 赵丹丹, 郝建雄, 刘学强

张玉玺,刘星宇,齐肖亚,等. 耐热小麦阿拉伯木聚糖酶Xyn11A在全麦面包品质改良中的应用[J]. 食品工业科技,2024,45(24):82−89. doi: 10.13386/j.issn1002-0306.2024010111.
引用本文: 张玉玺,刘星宇,齐肖亚,等. 耐热小麦阿拉伯木聚糖酶Xyn11A在全麦面包品质改良中的应用[J]. 食品工业科技,2024,45(24):82−89. doi: 10.13386/j.issn1002-0306.2024010111.
ZHANG Yuxi, LIU Xingyu, QI Xiaoya, et al. Application of Thermostable Wheat Arabino-xylanase Xyn11A for Quality Improvement of Wholewheat Bread[J]. Science and Technology of Food Industry, 2024, 45(24): 82−89. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024010111.
Citation: ZHANG Yuxi, LIU Xingyu, QI Xiaoya, et al. Application of Thermostable Wheat Arabino-xylanase Xyn11A for Quality Improvement of Wholewheat Bread[J]. Science and Technology of Food Industry, 2024, 45(24): 82−89. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024010111.

耐热小麦阿拉伯木聚糖酶Xyn11A在全麦面包品质改良中的应用

基金项目: 国家自然科学基金青年科学基金项目(32201975);河北省自然科学基金青年项目(C2022208010);河北省教育厅科学研究青年基金项目 (QN2022162);国家重点研发计划子课题(2022YFF1100504-05)。
详细信息
    作者简介:

    张玉玺(1995−),女,硕士研究生,研究方向:食品酶工程,E-mail:2714396645@qq.com

    通讯作者:

    刘学强(1993−),男,博士,讲师,研究方向:食品酶工程,E-mail:caulxq@163.com

  • 中图分类号: TS213.2

Application of Thermostable Wheat Arabino-xylanase Xyn11A for Quality Improvement of Wholewheat Bread

  • 摘要: 研究耐热小麦阿拉伯木聚糖酶Xyn11A的高密度发酵生产及其在全麦面包品质改良中的应用。采用高密度发酵法生产Xyn11A,并通过测定糊化特性、流变学特性、比容、质构、差示量热扫描仪(differential scanning calorimeter,DSC)及微观结构等指标,检验其在全麦面包品质改良中的效果。结果显示重组毕赤酵母经5-L发酵罐发酵108 h,上清木聚糖酶酶活力为1884 U/mL。率先将小麦阿拉伯木聚糖酶Xyn11A应用到全麦面团中,糊化特性显示,随着Xyn11A的添加,峰值黏度、谷值黏度、最终黏度呈先下降后增加的趋势。流变学特性显示,不同Xyn11A添加量(0~6 mg/kg),面团延展性从173 mm增加到了181.5 mm。Mixolab测得面团C1(面团稠度最大值)、C2(面筋弱化谷值)、C3(峰值黏度)、C4(保持黏度)、C5-C4(淀粉回生率)分别由1.119、0.443、1.568、1.399、0.963 Nm下降至1.113、0.437、1.512、1.252、0.774 Nm。进一步将小麦阿拉伯木聚糖酶Xyn11A应用到全麦面包中,随着添加量的增加全麦面包比容呈现先上升后下降的趋势,硬度呈现先下降后上升的趋势,当添加量为6 mg/kg时效果最好,与不添加Xyn11A的对照组相比,全麦面包比容增大了15.6%,硬度降低了26%。4 ℃不同贮藏时间(1~5 d)的硬度降低19.4%~23.9%,延缓了面包的老化。DSC显示,熔融温度以及差示扫描量热积分焓值在添加6 mg/kg Xyn11A时,相较不添加Xyn11A的对照组均有所降低,说明Xyn11A的添加延缓了全麦面包的老化。扫描电镜结果显示,Xyn11A添加后,面团微观结构更连续,面包内部网孔更密集均匀。综上,小麦阿拉伯木聚糖酶Xyn11A在全麦面包品质改善及延缓面包老化中呈现了优良的效果,在面制品改良中呈现出良好的潜力。
    Abstract: The high cell-density fermentation production of thermostable arabino-xylanase Xyn11A and its application in the whole wheat bread quality improvement were investigated. The high cell-density fermentation method was used to produce Xyn11A, and its effect in whole wheat bread quality improvement was evaluated by determining the pasting characteristics, rheological properties, specific volume, texture, differential scanning calorimeter (DSC) and scanning electron microscopy (SEM). The results showed that the supernatant xylanase enzyme activity was 1884 U/mL after fermentation of recombinant Pichia pastoris in a 5-L fermenter for 108 h. Pioneering the application of wheat arabinoxylanase Xyn11A in whole wheat dough, the gelatinization characteristics showed that with the addition of Xyn11A, the peak viscosity, trough viscosity, and final viscosity exhibited a trend of initially decreasing and then increasing. Rheological properties indicated that with varying amounts of Xyn11A added (0 to 6 mg/kg), the extensibility of the dough increased from 173 mm to 181.5 mm. The Mixolab measurements revealed that the dough's C1 (maximum dough consistency), C2 (gluten weakening trough), C3 (peak viscosity), C4 (retained viscosity), and C5-C4 (starch retrogradation rate) decreased from 1.119, 0.443, 1.568, 1.399, 0.963 Nm to 1.113, 0.437, 1.512, 1.252, 0.774 Nm, respectively. The wheat arabino-xylanase Xyn11A was further applied in whole wheat bread, and the specific volume of whole wheat bread showed a tendency to increase and then decrease, and the hardness showed a tendency to decrease and then increase, and the best effect was achieved when the addition amount was 6 mg/kg, which increased the specific volume of the whole wheat bread by 15.6%, and the hardness decreased by 26% compared with the control group without Xyn11A. Addition 6 mg/kg of Xyn11A in whole wheat bread, the hardness of bread decreased in a range of 19.4%~23.9% at 4 ℃ for different storage time (1~5 d), indicating the enzyme could delay the aging speed. DSC showed that the melting temperature as well as the differential scanning calorimetric integral enthalpy decreased with the addition of 6 mg/kg Xyn11A compared with the control group without Xyn11A, indicating that the addition of Xyn11A delayed the aging of whole wheat bread. SEM results showed that the addition of Xyn11A resulted in a more continuous dough microstructure and a denser and more homogeneous internal mesh of the bread. In summary, wheat arabinoxylanase Xyn11A would show excellent effects in improving the quality of whole wheat bread and delaying the staling process, demonstrating good potential in the modification of baked goods.
  • 全麦粉作为面包制作的主要原料之一,含有丰富的维生素、矿物质、膳食纤维以及黄酮和类胡萝卜素等营养物质,长期摄入全麦食品可以降低患心血管疾病、糖尿病和癌症等慢性疾病的风险[1]。但由于全麦粉中存在着大量麸皮和胚芽,使全麦食品质地粗糙、感官品质不佳,加之其消费成本高等缺点,导致其接受程度不高。关于麦麸对面团品质的影响,目前已有研究显示在面团体系中加入麦麸会对面团的加工性能产生负面影响,降低面团的面筋强度和储气能力[2]。同时麦麸的添加也会使面团的形成时间增加,破坏了面筋稳定的空间结构[3]。由此说明全麦粉中大量纤维的存在使全麦制品硬度高,品质差。但居民膳食营养结构的改变,使人们对全麦食品的关注度逐渐增加。在保留较高纤维的基础上,提高全麦食品品质,成为目前研究的热点。

    酶制剂作为绿色安全生物制剂,在烘焙行业的应用备受关注。近年来,研究者们尝试了用不同酶制剂来改善面团的流变学特性,进而提升面制品品质。目前用于面制品改良的酶制剂主要包括木聚糖酶、淀粉酶、葡萄糖氧化酶和谷氨酰胺转氨酶等,其中木聚糖酶的用量占比可达40%[45],显示出巨大的应用前景。

    木聚糖酶(β-1,4-xylanase,EC 3.2.1.8)能够水解木聚糖主链中的β-1,4-糖苷键,将木聚糖降解为低聚木糖或木糖[6]。木聚糖酶在面制品、果汁澄清、酿酒等食品领域应用广泛,但不同领域的应用对酶的性质需求不尽一致[78]。尽管已有多种微生物木聚糖酶的报道,由于酶在面制品改良中的应用与底物特异性和耐热性密切相关,能应用于面制品改良的品种报导较少,因此发掘具备自主知识产权的木聚糖酶十分重要。全麦面粉中大约有2%~5%的阿拉伯木聚糖,根据水溶性不同,可分为水不溶性阿拉伯木聚糖和水溶性阿拉伯木聚糖,其中水溶性的阿拉伯木聚糖约占25%~30%[9]。而木聚糖酶能够水解小麦等谷物细胞壁中的非淀粉多糖,使得面筋更好的形成,从而产生更好的面筋基质和更高品质的面包[10]。基于面制品烘焙工艺,兼具耐热型和小麦阿拉伯木聚糖活性的木聚糖酶具有应用于全麦面包品质改良的潜力。前期课题组筛选得到耐热小麦阿拉伯木聚糖酶Xyn11A,其最适温度为70 ℃,对小麦阿拉伯木聚糖的催化活力可达1850 U/mg,因此,本文考虑通过高密度发酵生产耐热小麦阿拉伯木聚糖酶Xyn11A,并将其添加到全麦面粉中,研究该酶对全麦面团糊化特性、流变学特性、拉伸特性及全麦面包差示量热扫描仪(differential scanning calorimeter,DSC)、比容、质构、老化等方面的影响,进而评价其在全麦制品中的应用潜力。

    鑫乐全麦粉 内蒙古五原县塞鑫面业有限公司;耐高糖活性干酵母 安琪酵母股份有限公司;白砂糖 河北丰昊食品有限公司;深井盐 中盐河北盐业专营有限公司;多美鲜黄油 上海高夫食品有限公司;酵母提取物、胰蛋白胨 英国Oxiod公司;其它化学试剂均为分析纯级。

    5-L高密度发酵罐 河北三德济辰生物科技股份有限公司;B7LB和面机 上海丽麦机械设备有限公司;VF-12C醒发箱 广州旭众食品有限公司;TRTF32电烤箱 佛山市伟士达电器有限公司;MB120水分分析仪 奥豪斯仪器有限公司;RVA-4500快速黏度分析仪 瑞典Perten公司;Mixolab混合实验仪 法国肖邦公司;DSC 3500 Sirius 德国Netzsch公司;JMLD150面团拉伸仪 北京东孚久恒仪器技术有限公司。

    参照毕赤酵母发酵手册(VersionB,053002,Invitrogen)。重组毕赤酵母在 YPD(Yeast extract peptone dextrose medium)培养基中培养成种子液,然后将种子液接种到装有2 L BSM(Fermentation basal salts medium)培养基的发酵罐中。用氨水调节pH至4.0,在转速600 r/min,温度30 ℃的条件下菌体缓慢生长。待培养基中的甘油消耗完,pH调为5.0,开始向罐中逐滴加入50%的甘油,待菌体湿重达到180~220 g/L,停止加甘油。饥饿30 min,转速调至800 r/min,pH调为6.0,开始加甲醇诱导产酶。之后每隔12 h取样,测定发酵液的湿重,上清液酶活力和蛋白含量。

    木聚糖酶酶活力测定采用DNS法[11],蛋白含量测定参照 Lowry 等[12]的方法。

    采用快速黏度分析仪测定不同木聚糖酶添加量的面粉糊化特性。称取2.90 g面粉,加入到铝罐中,再分别添加25.10 g蒸馏水及不同量的木聚糖酶酶液,进行测定 。

    使用MB120水分分析仪测定全麦粉的含水量,随后用Mixolab混合试验仪测定木聚糖酶Xyn11A对面团流变学的影响。Mixolab的测定条件参数为:面粉质量46.78 g,起始温度为30 ℃,于30 ℃恒温8 min,再以4 ℃/min的速度升温至90 ℃后恒温7 min,最后以相同的速度降温至50 ℃,并维持5 min,全程共45 min。

    全麦面团拉伸特性测定,按照GB/T 14615-2019《粮油检验 小麦粉面团流变学特性测试 拉伸仪法》进行测试。

    称取240 g全麦粉、24 g糖、量取144 mL水加入定量的Xyn11A酶液(0~10 mg/kg),于和面机中混匀。低速搅拌2 min,然后依次加入2.4 g耐高糖活性酵母、2.4 g 盐和9.6 g无盐黄油,高速搅拌4 min,低速搅拌2 min,再转高速搅拌6 min。于38 ℃、相对湿度80%的条件下,醒发70 min,将面团分割(68 g/个)揉圆,松弛10 min后,擀气泡、整形、装盒,相同醒发条件下二次醒发16 min,之后于上火170 ℃、下火180 ℃烤箱烘烤11 min。烘烤结束,将全麦面包室温冷却2 h,用保鲜袋密封后备用。

    全麦面包体积按照GB/T 20981-2007油菜籽排体积法测定。比容计算公式:

    (cm3/g)=/

    从全麦面包中部切取15 mm厚度均匀的面包片,通过质构仪测定面包芯的硬度[13]。选用P/10圆柱型探头,设定测定前速度2 mm/s,测定中的速度和测定后速度均为1 mm/s,压缩形变量50%,感应力0.5 N。

    全麦面包放于4 ℃条件下储藏,通过质构仪测定烘焙当天面包的硬度和4 ℃条件下贮藏1、3、5 d全麦面包的硬度变化,观察木聚糖酶 Xyn11A 对全麦面包老化的影响。

    通过DSC对全麦面包老化情况进行评价,将全麦面包从中部切成厚度为10 mm的均匀薄片,取面包片中同一位置2.6 mg的面包渣放于样品坩埚进行实验,以空坩埚做空白对照。DSC程序设定为在20 ℃平衡,以冷却速度10 ℃/min从20 ℃降至−40 ℃,于−40 ℃保持15 min,以加热速度10 ℃/min从−40 ℃升至110 ℃。记录过程中的熔融温度(起始温度、峰值温度、终止温度)、积分溶解焓值(J/g dry starch)。

    准备空白和添加6 mg/kg木聚糖酶的面团和面包样品,经冻干和喷金处理后,通过扫描电子显微镜进行微观结构观察。

    使用SPSS 27.0软件对数据进行Duncan多重比较,使用软件Origin 8.0对实验数据绘图分析。显著性水平确定为P<0.05。

    重组毕赤酵母经5-L发酵罐高密度发酵,甲醇诱导培养108 h,发酵液经离心处理,上清木聚糖酶Xyn11A活力达1884 U/mL,蛋白浓度为18.7 mg/mL,菌体湿重为336.4 g/L (图1),该菌株为中上等表达水平。目前已有多种木聚糖酶在毕赤酵母中成功表达,如嗜热单胞菌(Thermo-bifida fusca)YX [14]、链霉菌(Streptomyces sp.)FA1[15]和毛壳霉(Chaetomium sp. CQ31)[16]来源木聚糖酶rXyn11A 、XynA和CsXyn11B的产酶表达水平分别为1157.6、1374和2788 U/mL。

    图  1  小麦阿拉伯木聚糖酶Xyn11A高密度发酵历程
    Figure  1.  Time-course profile of Xyn11A high cell-density fermentation

    通过快速黏度分析仪对全麦粉的糊化特性进行分析(表1)。未添加木聚糖酶时峰值黏度、谷值黏度、最终黏度分别为915、455.33、1084.33 Pa·s,当加酶量为6 mg/kg时峰值黏度、谷值黏度、最终黏度均降到最低分别为895.33、446.33、1063 Pa·s,说明小麦阿拉伯木聚糖酶的添加使面粉的黏度显著降低(P<0.05)。当木聚糖酶添加量超过6 mg/kg,各黏度值呈现回升趋势。

    表  1  不同木聚糖酶添加量对全麦面粉糊化特性的影响
    Table  1.  Effects of different xylanase supplemental levels on gelatinization characteristics of whole wheat flour
    木聚糖酶添加量(mg/kg) 峰值黏度(Pa·s) 谷值黏度(Pa·s) 衰减值(Pa·s) 最终黏度(Pa·s) 回生值(Pa·s) 峰值时间(min) 糊化温度(℃)
    0 915.00±6.08d 455.33±2.51ab 459.67±6.66b 1084.33±1.53bc 629.00±3.64a 5.40±0.00a 89.62±0.03ab
    2 909.33±2.08cd 450.67±3.51ab 458.67±3.79b 1075.00±5.20abc 624.33±3.06a 5.40±0.00a 89.08±0.49a
    4 900.00±4.36ab 449.00±1.00ab 451.00±4.58ab 1068.33±3.06a 619.33±4.04a 5.47±0.00b 89.92±0.42b
    6 895.33±2.52a 446.33±4.51a 449.00±6.08ab 1063.00±12.12a 616.67±7.64a 5.45±0.04b 90.17±0.49b
    8 902.33±5.51abc 451.33±3.06ab 451.00±7.94ab 1072.67±5.51ab 621.33±4.04a 5.45±0.04b 89.93±0.49b
    10 905.67±5.51bc 474.33±32.62b 431.33±27.15a 1087.00±6.08c 612.67±26.57a 5.47±0.00b 90.17±0.41b
    注:同列不同小写字母表示差异显著(P<0.05),表3同。
    下载: 导出CSV 
    | 显示表格

    由此来看,随着Xyn11A添加量的增加,峰值黏度、谷值黏度、最终黏度呈先下降后上升的趋势。说明在木聚糖酶的作用下,全麦面粉中部分水不溶性的阿拉伯木聚糖降解为水溶性的阿拉伯木聚糖,比例更加合适的二者可以和其他组分发生氧化凝胶作用,面筋持水性增加,黏度下降[17]。当木聚糖酶添加量超过6 mg/kg时,阿拉伯木聚糖过度水解为木寡糖,使面糊稠度增加,另外也降低了水不溶性阿拉伯木聚糖的持水性,使黏度增加。因此适量小麦阿拉伯木聚糖酶Xyn11A的添加使全麦粉更易糊化[18]

    通过MB120水分分析测定仪得全麦粉的含水量为9%。该全麦粉在不添加Xyn11A时吸水率为51.4%,可达到仪器运行条件,此时测定的C1值为1.119 Nm。从图2可以看出,面团的扭矩值随着木聚糖酶的添加不断下降,在添加量为6 mg/kg时面团的扭矩值最低;继续增加Xyn11A的添加量,面团扭矩值逐渐上升,说明6 mg/kg为最适加酶量。由表2可知,小麦阿拉伯木聚糖酶Xyn11A添加6 mg/kg时,与不添加木聚糖酶Xyn11A的全麦面团相比,面团的C1、C2、C3、C4、C5值及形成时间和稳定时间均呈下降趋势。当添加量超过6 mg/kg时,部分C值上升,说明过量木聚糖酶的加入使阿拉伯木聚糖过度水解,水不溶性阿拉伯木聚糖持水性降低,面团的黏度增加,糊化率增加,加速了面团老化。

    图  2  不同木聚糖酶 Xyn11A 添加量的面团 Mixolab曲线图
    Figure  2.  Mixolab curves of dough with different amounts of Xyn11A added
    表  2  木聚糖酶Xyn11A对全麦面团流变学的影响
    Table  2.  Effects of xylanase Xyn11A on the rheology of whole wheat dough
    木聚糖酶添加量(mg/kg) C1(Nm) C2(Nm) C3(Nm) C4(Nm) C5(Nm) C5-C4(Nm) 形成时间(min) 稳定时间(min)
    0 1.119 0.443 1.568 1.399 2.362 0.963 4.4 7.0
    2 1.098 0.454 1.536 1.339 2.241 0.902 3.95 7.1
    4 1.127 0.454 1.523 1.298 2.157 0.859 3.9 6.7
    6 1.113 0.437 1.512 1.252 2.026 0.774 3.85 6.9
    8 1.114 0.445 1.531 1.273 2.037 0.764 3.75 7.1
    10 1.132 0.446 1.526 1.264 2.143 0.879 4.12 6.9
    下载: 导出CSV 
    | 显示表格

    随着小麦阿拉伯木聚糖酶Xyn11A的添加,面团C1值的下降代表面团的吸水率的下降,面团黏度下降,C3和C4值的下降代表淀粉糊化率下降、淀粉糊化稳定性下降,C5值、C5-C4值的下降则代表着淀粉回生率下降。刘凯等[19]研究表明添加木聚糖酶后面团吸水率下降、并且缩短了面团的形成时间和稳定时间,增加了面团的柔软度,与本文研究结果一致。表明Xyn11A可以延缓面团的老化。Xyn11A可水解全麦面粉中大分子量阿拉伯木聚糖,从而降低面筋和阿拉伯木聚糖之间的竞争性吸水,使面筋吸水增多,进而形成更好的面筋网络结构,减少了面团的形成时间,对面团流变学产生了影响[20]

    通过JMLD150面团拉伸仪对全麦面团拉伸特性进行了研究(表3),结果显示,Xyn11A添加后全麦面团的延展度呈现先增加后降低的趋势而拉伸阻力和拉伸曲线面积呈现先降低后增加的趋势。在保温时间45、90、135 min条件下,木聚糖酶添加量从0~6 mg/kg逐渐增加,各保温时间延展度均逐渐增大,拉伸面积均逐渐减小,当添加量超过6 mg/kg时延展度开始减小,拉伸面积有所增加,这与王佳玉[21]的研究结果一致。

    表  3  不同Xyn11A添加量对面团拉伸特性的影响
    Table  3.  Effects of different Xyn11A additions on dough tensile properties
    木聚糖酶
    添加量
    (mg/kg)
    保温45 min 保温90 min 保温135 min
    延展度
    (mm)
    拉伸阻力(BU) 拉伸曲线面积
    (cm2
    延展度(mm) 拉伸阻力(BU) 拉伸曲线面积
    (cm2
    延展度(mm) 拉伸阻力(BU) 拉伸曲线面积
    (cm2
    0 173.00±1.41a 417.00±106.07ab 98.50±9.19ab 163.50±0.71a 368.50±53.03ab 89.00±8.49a 153.50±0.71a 322.50±0.71ab 75.00±1.41a
    2 179.00±0.00ab 373.50±58.69ab 96.50±12.02ab 171.00±1.41ab 323.00±31.11a 82.50±6.36a 162.00±0.00ab 297.50±2.12ab 71.50±0.71a
    4 180.00±5.66ab 327.50±20.51ab 88.50±6.36ab 170.00±1.41ab 299.50±12.02a 75.50±3.54a 177.00±8.49b 279.50±6.36a 71.50±4.95a
    6 181.50±2.12b 298.50±3.54a 77.50±2.12a 175.00±7.07b 287.00±5.66a 74.00±4.24a 170.00±4.24b 275.00±1.41a 68.50±2.12a
    8 176.50±2.12ab 434.00±62.23ab 88.00±12.73ab 172.00±0.00b 365.00±52.33ab 81.50±23.33a 174.50±10.61b 344.50±44.55b 78.00±9.90a
    10 172.50±3.54a 463.50±7.78b 109.00±4.24b 167.50±0.71ab 446.50±44.55b 92.50±0.71a 169.00±4.24b 393.50±6.36c 94.50±0.71b
    下载: 导出CSV 
    | 显示表格

    王显伦等[22]指出,木聚糖酶可以提高面团的延展性。本研究结果表明延展性的增加可能由于部分不溶性阿拉伯木聚糖水解为水溶性阿拉伯木聚糖及其他小分子的物质,这些物质溶于水,均匀分布于面筋网络结构中,提高面筋结构的致密性,使面团柔软有弹性,延展性增加。另外,水不溶性木聚糖的降解,使其吸收的水被释放,面团中有较多自由水存在,使面团变软,拉伸阻力下降,拉伸曲线面积下降。但Xyn11A添加过量后,水溶性阿拉伯木聚糖进一步水解,使面筋网络弱化,面团过软过黏,延展性降低、拉伸阻力、拉伸曲线面积增加[23]

    通过TA-XT plus质构仪的测定,考察了小麦阿拉伯木聚糖酶Xyn11A对全麦面包比容和老化程度的影响。

    小麦阿拉伯木聚糖酶Xyn11A对全麦面包比容和硬度的影响(图3),对照组全麦面包的比容和硬度分别为2.95 mL/g和116.54 g,当加酶量由2 mg/kg加至6 mg/kg时,面包的比容不断增大,硬度不断减小,当加酶量为6 mg/kg,面包比容最大,为3.41 mL/g,相比对照增大了15.6%,硬度最小,为88.28 g,相比对照降低了24.3%。当加酶量继续增加,比容出现下降趋势,而硬度呈现增加的趋势。张亚萍等[24]添加镰刀菌 Fo47 来源的木聚糖酶到全麦面包中,当添加量为使比容增大13.06%,硬度降低了32.20%。Carvalho等[25]将子座木霉(T. stromaticum)来源的木聚糖酶在面包中进行应用,面包硬度相比对照降低了50%,明显改善了面包的老化情况。刘玉春等[26]发现来源于裂褶菌(Schizophyllum commune)的木聚糖酶ScXyn22能够使全麦面包比容提高19.7%,硬度降低57.3%,均与本研究结果相似。说明木聚糖酶可以使水不溶性阿拉伯木聚糖适当降解,持水性降低,促进面筋结构充分快速扩展和形成,增加面团的持气能力,增大全麦面包比容,降低硬度[27]。当木聚糖酶添加超过6 mg/kg时,水溶性阿拉伯木聚糖进一步降解后,持水性降低,面筋网络变差,面团持气能力下降,全麦面包比容变小[2829],硬度增加。因此,6 mg/kg为Xyn11A在面包中应用的最适加酶量。

    图  3  Xyn11A对全麦面包比容和硬度的影响
    Figure  3.  Effects of Xyn11A on the specific volume and hardness of whole wheat bread

    图4为不同小麦阿拉伯木聚糖酶Xyn11A添加量的全麦面包切片图,从左至右木聚糖酶Xyn11A添加量依次为0(对照)、2、4、6、8、10 mg/kg。明显看到相较于对照面包片,添加木聚糖酶后的面包片体积有所增大,切面结构更加疏松多空,而空白面包片结构更加致密紧实,说明该木聚糖酶对面包比容有一定影响。

    图  4  不同木聚糖酶Xyn11A添加量的全麦面包切片图
    Figure  4.  Slices of whole wheat bread with different Xyn11A supplemental levels

    小麦阿拉伯木聚糖酶Xyn11A对全麦面包贮藏期间老化的影响(图5)。不添加Xyn11A的全麦面包在贮藏1、3和5 d的硬度分别为192.43、306.29和359.56 g,随着贮藏时间的延长,各组的面包硬度均有增加,在1~3 d内面包硬度的增加速度最快。在相同存储时间下,添加Xyn11A的全麦面包硬度均小于对照的面包硬度,在加酶量为6 mg/kg时,面包1、3、5 d的硬度分别为152.00、232.80、289.79 g。全麦面包贮藏期间的硬度变化说明了小麦阿拉伯木聚糖酶Xyn11A可以延缓面包的老化[30]

    图  5  木聚糖酶Xyn11A对全麦面包贮藏期间老化影响
    Figure  5.  Effect of Xyn11A on the staling of whole wheat bread during storage

    用差示量热扫描仪预测了面包对照和添加6 mg/kg小麦阿拉伯木聚糖酶Xyn11A面包样品的老化情况(图6)。面包对照的熔融起始温度、峰值温度和终止温度分别为−11.4、−3.8和1.7 ℃,添加6 mg/kg Xyn11A的面包的熔融起始温度、峰值温度和终止温度分别为−13.9、−6.8和2.6 ℃。差示扫描量热图积分焓值由对照的32.39 J/g下降至22.92 J/g,积分焓值减小说明反应过程中淀粉链之间的氢键被打断,支链淀粉结晶程度变小,与极性水分子的亲和力增加,造成自由水减少,从而抑制了面包的老化(表4[31]

    表  4  木聚糖酶Xyn11A对面包品质影响的DSC分析
    Table  4.  DSC analysis figures of bread with or without Xyn11A
    木聚糖酶添加量(mg/kg) 起始温度(℃) 峰值温度(℃) 终止温度(℃) 积分焓值(J/g)
    0 −11.4 −3.8 1.7 32.39
    6 −13.9 −6.8 2.6 22.92
    下载: 导出CSV 
    | 显示表格
    图  6  添加与未添加木聚糖酶Xyn11A的全麦面包DSC图
    Figure  6.  DSC chart of whole wheat bread with and without Xyn11A

    利用扫描电镜(SEM)对未添加小麦阿拉伯木聚糖酶Xyn11A的全麦面团、全麦面包和添加6 mg/kg Xyn11A的全麦面团和全麦面包的微观结构进行观察(图7)。未添加 Xyn11A的全麦面团(图7(a))有较多的淀粉颗粒暴露在外、散乱分布。添加了6 mg/kg Xyn11A的全麦面团(图7(b))中的淀粉颗粒聚集程度减小,部分暴露在外或被包裹于面筋结构中。未添加Xyn11A的全麦面包(图7(c))质地紧密、结构不均匀、质地粗糙。添加了6 mg/kg Xyn11A的全麦面包(图7(d))的面筋基质的网络结构更加连续,面包内部结构更细腻,网孔更多且大小更均匀。说明适量木聚糖酶的添加改善了发酵面团的组织结构,进而提高了面团的发酵能力,使面包具有良好的产气和持气性能,有利于面包的比容增大[3233]

    图  7  添加与未添加 Xyn11A的全麦面团及全麦面包的扫描电子显微镜 (SEM)图像
    注:(a)不添加Xyn11A的面团;(b) 添加6mg/kg Xyn11A的面团;(c)不添加Xyn11A的面包;(d)添加6mg/kg Xyn11A的面包;其中,(a)与(b)为放大12000;(c)与(d)为放大500倍。
    Figure  7.  Scanning electron microscope (SEM) of whole wheat dough and whole wheat bread with and without the addition of Xyn11A

    全麦面包的生产为人类提供了营养和健康的益处。本文通过高密度发酵对耐热小麦阿拉伯木聚糖酶Xyn11A进行了生产,上清液酶活力最高为1884 U/mL。小麦阿拉伯木聚糖酶Xyn11A应用到全麦面团中,改善了流变学特性,增加了面团的延展度。同时全麦面包相比对照比容增加了15.6%,硬度降低了26%,并且延缓了4 ℃下储藏全麦面包的老化。本研究结果表明适量添加耐热小麦阿拉伯木聚糖酶Xyn11A可以明显改善全麦面包的面筋结构,提高全麦面包的品质,也进一步验证了耐热小麦阿拉伯木聚糖酶Xyn11A在全麦面包制作中的优良性能。

  • 图  1   小麦阿拉伯木聚糖酶Xyn11A高密度发酵历程

    Figure  1.   Time-course profile of Xyn11A high cell-density fermentation

    图  2   不同木聚糖酶 Xyn11A 添加量的面团 Mixolab曲线图

    Figure  2.   Mixolab curves of dough with different amounts of Xyn11A added

    图  3   Xyn11A对全麦面包比容和硬度的影响

    Figure  3.   Effects of Xyn11A on the specific volume and hardness of whole wheat bread

    图  4   不同木聚糖酶Xyn11A添加量的全麦面包切片图

    Figure  4.   Slices of whole wheat bread with different Xyn11A supplemental levels

    图  5   木聚糖酶Xyn11A对全麦面包贮藏期间老化影响

    Figure  5.   Effect of Xyn11A on the staling of whole wheat bread during storage

    图  6   添加与未添加木聚糖酶Xyn11A的全麦面包DSC图

    Figure  6.   DSC chart of whole wheat bread with and without Xyn11A

    图  7   添加与未添加 Xyn11A的全麦面团及全麦面包的扫描电子显微镜 (SEM)图像

    注:(a)不添加Xyn11A的面团;(b) 添加6mg/kg Xyn11A的面团;(c)不添加Xyn11A的面包;(d)添加6mg/kg Xyn11A的面包;其中,(a)与(b)为放大12000;(c)与(d)为放大500倍。

    Figure  7.   Scanning electron microscope (SEM) of whole wheat dough and whole wheat bread with and without the addition of Xyn11A

    表  1   不同木聚糖酶添加量对全麦面粉糊化特性的影响

    Table  1   Effects of different xylanase supplemental levels on gelatinization characteristics of whole wheat flour

    木聚糖酶添加量(mg/kg) 峰值黏度(Pa·s) 谷值黏度(Pa·s) 衰减值(Pa·s) 最终黏度(Pa·s) 回生值(Pa·s) 峰值时间(min) 糊化温度(℃)
    0 915.00±6.08d 455.33±2.51ab 459.67±6.66b 1084.33±1.53bc 629.00±3.64a 5.40±0.00a 89.62±0.03ab
    2 909.33±2.08cd 450.67±3.51ab 458.67±3.79b 1075.00±5.20abc 624.33±3.06a 5.40±0.00a 89.08±0.49a
    4 900.00±4.36ab 449.00±1.00ab 451.00±4.58ab 1068.33±3.06a 619.33±4.04a 5.47±0.00b 89.92±0.42b
    6 895.33±2.52a 446.33±4.51a 449.00±6.08ab 1063.00±12.12a 616.67±7.64a 5.45±0.04b 90.17±0.49b
    8 902.33±5.51abc 451.33±3.06ab 451.00±7.94ab 1072.67±5.51ab 621.33±4.04a 5.45±0.04b 89.93±0.49b
    10 905.67±5.51bc 474.33±32.62b 431.33±27.15a 1087.00±6.08c 612.67±26.57a 5.47±0.00b 90.17±0.41b
    注:同列不同小写字母表示差异显著(P<0.05),表3同。
    下载: 导出CSV

    表  2   木聚糖酶Xyn11A对全麦面团流变学的影响

    Table  2   Effects of xylanase Xyn11A on the rheology of whole wheat dough

    木聚糖酶添加量(mg/kg) C1(Nm) C2(Nm) C3(Nm) C4(Nm) C5(Nm) C5-C4(Nm) 形成时间(min) 稳定时间(min)
    0 1.119 0.443 1.568 1.399 2.362 0.963 4.4 7.0
    2 1.098 0.454 1.536 1.339 2.241 0.902 3.95 7.1
    4 1.127 0.454 1.523 1.298 2.157 0.859 3.9 6.7
    6 1.113 0.437 1.512 1.252 2.026 0.774 3.85 6.9
    8 1.114 0.445 1.531 1.273 2.037 0.764 3.75 7.1
    10 1.132 0.446 1.526 1.264 2.143 0.879 4.12 6.9
    下载: 导出CSV

    表  3   不同Xyn11A添加量对面团拉伸特性的影响

    Table  3   Effects of different Xyn11A additions on dough tensile properties

    木聚糖酶
    添加量
    (mg/kg)
    保温45 min 保温90 min 保温135 min
    延展度
    (mm)
    拉伸阻力(BU) 拉伸曲线面积
    (cm2
    延展度(mm) 拉伸阻力(BU) 拉伸曲线面积
    (cm2
    延展度(mm) 拉伸阻力(BU) 拉伸曲线面积
    (cm2
    0 173.00±1.41a 417.00±106.07ab 98.50±9.19ab 163.50±0.71a 368.50±53.03ab 89.00±8.49a 153.50±0.71a 322.50±0.71ab 75.00±1.41a
    2 179.00±0.00ab 373.50±58.69ab 96.50±12.02ab 171.00±1.41ab 323.00±31.11a 82.50±6.36a 162.00±0.00ab 297.50±2.12ab 71.50±0.71a
    4 180.00±5.66ab 327.50±20.51ab 88.50±6.36ab 170.00±1.41ab 299.50±12.02a 75.50±3.54a 177.00±8.49b 279.50±6.36a 71.50±4.95a
    6 181.50±2.12b 298.50±3.54a 77.50±2.12a 175.00±7.07b 287.00±5.66a 74.00±4.24a 170.00±4.24b 275.00±1.41a 68.50±2.12a
    8 176.50±2.12ab 434.00±62.23ab 88.00±12.73ab 172.00±0.00b 365.00±52.33ab 81.50±23.33a 174.50±10.61b 344.50±44.55b 78.00±9.90a
    10 172.50±3.54a 463.50±7.78b 109.00±4.24b 167.50±0.71ab 446.50±44.55b 92.50±0.71a 169.00±4.24b 393.50±6.36c 94.50±0.71b
    下载: 导出CSV

    表  4   木聚糖酶Xyn11A对面包品质影响的DSC分析

    Table  4   DSC analysis figures of bread with or without Xyn11A

    木聚糖酶添加量(mg/kg) 起始温度(℃) 峰值温度(℃) 终止温度(℃) 积分焓值(J/g)
    0 −11.4 −3.8 1.7 32.39
    6 −13.9 −6.8 2.6 22.92
    下载: 导出CSV
  • [1] 陆云军, 陆利霞, 姚丽丽, 等. 酶制剂对全麦面包品质作用分析[J]. 食品工业科技,2021,42(1):363−367,372. [LU Y J, LU L X, YAO L L, et al. Analysis on the effect of enzymes on the quality of whole wheat bread[J]. Science and Technology of Food Industry,2021,42(1):363−367,372.]

    LU Y J, LU L X, YAO L L, et al. Analysis on the effect of enzymes on the quality of whole wheat bread[J]. Science and Technology of Food Industry, 2021, 42(1): 363−367,372.

    [2]

    NAVROTSKYI S, GUO G, BAENZIGER P S, et al. Impact of wheat bran physical properties and chemical composition on whole grain flour mixing and baking properties[J]. Journal of Cereal Science,2019,89:102790. doi: 10.1016/j.jcs.2019.102790

    [3] 安兆鹏, 王然, 赵文哲, 等. 小麦麸皮对面团及面筋蛋白特性的影响[J]. 食品研究与开发,2018,39(9):11−17. [AN Z P, WANG R, ZHAO W Z, et al. Effects of wheat bran on dough and gluten characteristics[J]. Food Research and Development,2018,39(9):11−17.] doi: 10.3969/j.issn.1005-6521.2018.09.003

    AN Z P, WANG R, ZHAO W Z, et al. Effects of wheat bran on dough and gluten characteristics[J]. Food Research and Development, 2018, 39(9): 11−17. doi: 10.3969/j.issn.1005-6521.2018.09.003

    [4]

    DAHIYA S, BAJAJ B K, KUMAR A, et al. A review on biotechnological potential of multifarious enzymes in bread making[J]. Process Biochemistry,2020,99:290−306. doi: 10.1016/j.procbio.2020.09.002

    [5]

    YINING D, SALWA K. A review of bread qualities and current strategies for bread bioprotection:Flavor, sensory, rheological, and textural attributes[J]. Comprehensive Reviews in Food Science and Food Safety,2021,20(2):1937−1981. doi: 10.1111/1541-4337.12717

    [6]

    MENDONÇA M, BARROCA M, COLLINS T. Endo-1, 4-β-xylanase-containing glycoside hydrolase families:Characteristics, singularities and similarities[J]. Biotechnology Advances,2023,65:108148. doi: 10.1016/j.biotechadv.2023.108148

    [7]

    BOYI A S, YUN H, GUOJIE S, et al. Thermostable cellulases xylanases from thermophilic and hyperthermophilic microorganisms:Current perspective[J]. Frontiers in Bioengineering and Biotechnology,2021,9:794304. doi: 10.3389/fbioe.2021.794304

    [8] 余静, 刘学强, 马俊文, 等. 棘孢木霉GH11家族木聚糖酶的异源表达及酶学性质[J]. 食品科学技术学报,2020,38(6):29−38. [YU J, LIU X Q, MA J W, et al. Heterologous expression and enzymatic properties of Xylanase of GH11 family from Trichoderma asperellum[J]. Journal of Food Science and Technology,2020,38(6):29−38.]

    YU J, LIU X Q, MA J W, et al. Heterologous expression and enzymatic properties of Xylanase of GH11 family from Trichoderma asperellum[J]. Journal of Food Science and Technology, 2020, 38(6): 29−38.

    [9]

    LI X, ZHANG L, JIANG Z T, et al. A novel cold-active GH8 xylanase from cellulolytic myxobacterium and its application in food industry[J]. Food Chemistry,2022,393:133463. doi: 10.1016/j.foodchem.2022.133463

    [10]

    YEGIN S, ALTINEL B, TULUK K. A novel extremophilic xylanase produced on wheat bran from Aureobasidium pullulans NRRL Y-2311-1:Effects on dough rheology and bread quality[J]. Food Hydrocolloids, 2018, 81389-81397.

    [11]

    YU J, LIU X Q, GUAN L Y, et al. High-level expression and enzymatic properties of a novel thermostable xylanase with high arabinoxylan degradation ability from Chaetomium sp. suitable for beer mashing[J]. International Journal of Biological Macromolecules:Structure, Function and Interactions,2021,168:223−232.

    [12]

    LOWRY O, ROSEBROUGH N, FARR A L, et al. Protein measurement with the folin phenol reagent[J]. Journal of Biological Chemistry,1951,193(1):265−275. doi: 10.1016/S0021-9258(19)52451-6

    [13] 杨连战, 蔡金鑫, 孟宪伟, 等. 复配改良剂对面包烘焙品质及抗老化的影响[J]. 中国粮油学报,2023,38(3):61−67. [YANG L Z, CAI J X, MENG X W, et al. Effects of compound improver on bread baking qualities and anti-aging[J]. Journal of the Chinese Cereals and Oils Association,2023,38(3):61−67.] doi: 10.3969/j.issn.1003-0174.2023.03.009

    YANG L Z, CAI J X, MENG X W, et al. Effects of compound improver on bread baking qualities and anti-aging[J]. Journal of the Chinese Cereals and Oils Association, 2023, 38(3): 61−67. doi: 10.3969/j.issn.1003-0174.2023.03.009

    [14]

    ZHAO L M, GENG J, GUO Y Q, et al. Expression of the Thermobifida fusca xylanase Xyn11A in Pichia pastoris and its characterization[J]. BMC Biotechnology,2015,15(1):18. doi: 10.1186/s12896-015-0135-y

    [15]

    XU Y, WU J, ZHENG K X, et al. A xylanase from Streptomyces sp. FA1:Heterologous expression, characterization, and its application in Chinese steamed bread[J]. Journal of Industrial Microbi Ology & Biotechnology,2016,43(5):663−670.

    [16] 杨行, 马俊文, 李延啸, 等. 毛壳霉木聚糖酶B(CsXyn11B)的分泌表达及其在面包中的应用[J]. 食品工业科技,2023,44(4):108−113. [YANG X, MA J W, LI Y X, et al. Secretion expression of xylanase B (CsXyn11B) from chaetomium sp. and Its application in bread[J]. Science and Technology of Food Industry,2023,44(4):108−113.]

    YANG X, MA J W, LI Y X, et al. Secretion expression of xylanase B (CsXyn11B) from chaetomium sp. and Its application in bread[J]. Science and Technology of Food Industry, 2023, 44(4): 108−113.

    [17]

    LI C Z. Investigating and optimizing bread-making properties of whole wheat flour[M]. 2023.

    [18]

    LIU X Q, YAN Q J, XUE Y B, et al. Biochemical characterization of a novel glycoside hydrolase family 11 xylanase from Chaetomium sp. suitable for bread making[J]. Process Biochemistry,2022,117:1−9. doi: 10.1016/j.procbio.2022.03.017

    [19] 刘凯, 肖付才. 木聚糖酶对面团特性及全麦面包品质影响[J]. 粮食与油脂,2021,34(4):23−26. [LIU K, XIAO F C. Effect of xylanase on dough characteristics and whole wheat bread quality[J]. Cereals & Oils,2021,34(4):23−26.] doi: 10.3969/j.issn.1008-9578.2021.04.007

    LIU K, XIAO F C. Effect of xylanase on dough characteristics and whole wheat bread quality[J]. Cereals & Oils, 2021, 34(4): 23−26. doi: 10.3969/j.issn.1008-9578.2021.04.007

    [20]

    SUN X Y, BU Z W, QIAO B Q, et al. The effects of wheat cultivar flour particle size and bran content on the rheology and microstructure of dough and the texture of whole wheat breads and noodles[J]. Food Chemistry,2023,410:135447. doi: 10.1016/j.foodchem.2023.135447

    [21] 王佳玉. 全麦面团的改良及对全麦食品品质影响的研究[D]. 哈尔滨:哈尔滨商业大学, 2020. [WANG J Y. Study on improvement of whole wheat dough and its infuence on quality of wheat based foods[D]. Harbin:Harbin University of Commerce, 2020.]

    WANG J Y. Study on improvement of whole wheat dough and its infuence on quality of wheat based foods[D]. Harbin: Harbin University of Commerce, 2020.

    [22] 王显伦, 任顺成, 潘思轶, 等. 木聚糖酶对面团流变性和热力学特性的影响[J]. 食品科学,2015,36(7):26−29. [WANG X L, REN S C, PAN S Y, et al. Effect of Xylanase on rheological and thermal properties of dough[J]. Food Science,2015,36(7):26−29.] doi: 10.7506/spkx1002-6630-201507005

    WANG X L, REN S C, PAN S Y, et al. Effect of Xylanase on rheological and thermal properties of dough[J]. Food Science, 2015, 36(7): 26−29. doi: 10.7506/spkx1002-6630-201507005

    [23]

    SHI K X, WANG P, ZHANG C, et al. Effects of anabaena lipoxygenase on whole wheat dough properties and bread quality[J]. Food Science & Nutrition,2020,8(10):5434−5442.

    [24] 张亚萍, 赵风光, 刘纯, 等. 镰刀菌Fo47来源木聚糖酶的异源表达、酶学性质及其对全麦面包品质的影响[J]. 食品研究与开发,2022,43(11):35−41. [ZHANG Y P, ZHAO F G, LIU C, et al. Xylanase from Fusarium oxysporum Fo47:Expression, characterization and application in whole-wheat bread making[J]. Food Research and Development,2022,43(11):35−41.] doi: 10.12161/j.issn.1005-6521.2022.11.005

    ZHANG Y P, ZHAO F G, LIU C, et al. Xylanase from Fusarium oxysporum Fo47: Expression, characterization and application in whole-wheat bread making[J]. Food Research and Development, 2022, 43(11): 35−41. doi: 10.12161/j.issn.1005-6521.2022.11.005

    [25]

    CARVALHO E A, GOES L M D S, UETANABARO A P T, et al. Thermoresistant xylanases from Trichoderma stromaticum:Application in bread making and manufacturing xylo-oligosaccharides[J]. Food Chemistry,2017,221:1499−506. doi: 10.1016/j.foodchem.2016.10.144

    [26] 刘玉春, 张维清, 任菲, 等. 裂褶菌极端嗜盐木聚糖酶ScXyn22的性质及对全麦面包品质的影响[J]. 食品科学,2022,43(18):127−33. [LIU Y C, ZHANG W Q, REN F, et al. Properties of extremely halotolerant xylanase ScXyn22 from Schizophyllum commune and its effect on the quality of whole wheat bread[J]. Food Science,2022,43(18):127−33.] doi: 10.7506/spkx1002-6630-20211019-199

    LIU Y C, ZHANG W Q, REN F, et al. Properties of extremely halotolerant xylanase ScXyn22 from Schizophyllum commune and its effect on the quality of whole wheat bread[J]. Food Science, 2022, 43(18): 127−33. doi: 10.7506/spkx1002-6630-20211019-199

    [27]

    LIU Z Y, WEN S T, WU G G, et al. Heterologous expression and characterization of Anaeromyces robustus xylanase and its use in bread making[J]. European Food Uropean Food Research and Technology,2022,248(9):2311−2324. doi: 10.1007/s00217-022-04047-2

    [28]

    TEBBEN L, SHEN Y, LI Y. Improvers and functional ingredients in whole wheat bread:A review of their effects on dough properties and bread quality[J]. Trends in Food Science & Technology,2018,81:10−24.

    [29]

    SEN M, ZHEN W, XINGFENG G, et al. Sourdough improves the quality of whole-wheat flour products:Mechanisms and challenges-A review[J]. Food Chemistry,2021,360:130038. doi: 10.1016/j.foodchem.2021.130038

    [30]

    YAPING Z, CHUN L, MANLI Y, et al. Characterization and application of a novel xylanase from Halolactibacillus miurensis in wholewheat bread making[J]. Frontiers in Bioengineering and Biotechnology,2022,10:1018476. doi: 10.3389/fbioe.2022.1018476

    [31] 石海信, 熊拯, 方怀义. 淀粉物态性质分析中DSC的应用[J]. 广东化工,2009,36(3):13−5,22. [SHI H X, XIONG Z, FANG H Y. Application of DSC in the analysis of starch’s physical state properties[J]. Guangdong Chemical Industry,2009,36(3):13−5,22.] doi: 10.3969/j.issn.1007-1865.2009.03.006

    SHI H X, XIONG Z, FANG H Y. Application of DSC in the analysis of starch’s physical state properties[J]. Guangdong Chemical Industry, 2009, 36(3): 13−5,22. doi: 10.3969/j.issn.1007-1865.2009.03.006

    [32] 郑玉娇, 郭晓娜, 朱科学. 添加阿拉伯木聚糖酶对荞麦馒头品质的影响[J]. 食品与生物技术学报,2020,39(7):99−104. [ZHENG Y J, GUO X N, ZHU K X. Effects of arabinoxylanase on the quality of buckwheat chinese steamed bread[J]. Journal of Food Science and Biotechnology,2020,39(7):99−104.] doi: 10.3969/j.issn.1673-1689.2020.07.014

    ZHENG Y J, GUO X N, ZHU K X. Effects of arabinoxylanase on the quality of buckwheat chinese steamed bread[J]. Journal of Food Science and Biotechnology, 2020, 39(7): 99−104. doi: 10.3969/j.issn.1673-1689.2020.07.014

    [33]

    AASHEIKHOLESLAMI Z, MAHFOUZI M, KARIMI M, et al. Modification of dough characteristics and baking quality based on whole wheat flour by enzymes and emulsifiers supplementation[J]. LWT-Food Science and Technology, 2021, 139.

  • 其他相关附件

图(7)  /  表(4)
计量
  • 文章访问数:  57
  • HTML全文浏览量:  14
  • PDF下载量:  9
  • 被引次数: 0
出版历程
  • 收稿日期:  2024-01-10
  • 网络出版日期:  2024-10-10
  • 刊出日期:  2024-12-14

目录

/

返回文章
返回
x 关闭 永久关闭