• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020
刘子健,顾佳盛,周聪,等. 基于高光谱成像技术的山楂产地判别研究[J]. 食品工业科技,2024,45(10):282−291. doi: 10.13386/j.issn1002-0306.2023090074.
引用本文: 刘子健,顾佳盛,周聪,等. 基于高光谱成像技术的山楂产地判别研究[J]. 食品工业科技,2024,45(10):282−291. doi: 10.13386/j.issn1002-0306.2023090074.
LIU Zijian, GU Jiacheng, ZHOU Cong, et al. Identification of Geographical Origin for Hawthorn Based on Hyperspectral Imaging Technology[J]. Science and Technology of Food Industry, 2024, 45(10): 282−291. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023090074.
Citation: LIU Zijian, GU Jiacheng, ZHOU Cong, et al. Identification of Geographical Origin for Hawthorn Based on Hyperspectral Imaging Technology[J]. Science and Technology of Food Industry, 2024, 45(10): 282−291. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023090074.

基于高光谱成像技术的山楂产地判别研究

Identification of Geographical Origin for Hawthorn Based on Hyperspectral Imaging Technology

  • 摘要: 产地是影响山楂品质的重要因素之一,为实现对山楂产地的快速无损鉴别,本文基于高光谱成像技术对不同产地的山楂样品进行产地溯源。以五个不同省级产区的山楂样品作为样本,利用近红外高光谱成像系统,获得每个样品果梗朝上(G)、侧面朝上(C)和底面朝上(D)的可见-短波红外(410~2500 nm)波段高光谱数据。采用多元散射校正(multivariate scattering correction,MSC)、一阶导数(first derivative,D1)、SG平滑(Savitzky-Golay,SG)和标准正态变换(standard normal variate transformation,SNV)四种预处理方法,分别建立了偏最小二乘判别分析(partial least squares discriminant analysis,PLS-DA)、支持向量机(support vector machine,SVM)和随机森林(random forests,RF)三种分类模型。结果表明,D-D1-SVM模型分类效果最优,训练集和预测集的准确率均为100%。为进一步简化模型,分别采用连续投影算法(successive projections algorithm,SPA)和竞争性自适应重加权算法(competitive adaptive reweighted sampling algorithm,CARS)进行特征波长筛选。通过多变量数据分析发现,D-SPA-SVM模型效果最佳,训练集和预测集准确率分别为95.2%和93%。本研究为山楂产地的快速、无损识别提供技术支持。

     

    Abstract: The geographical origin was one of the important factors affecting the quality of hawthorn. To discriminate the geographical origin of hawthorn rapidly and nondestructively, hawthorns from five different provincial production areas were used as samples, and visible-shortwave infrared (410~2500 nm) band hyperspectral data were obtained for the pedicel face (G), side (C), and bottom (D) of each sample by using a near-infrared hyperspectral imaging system. Partial least squares discriminant analysis (PLS-DA), support vector machine (SVM), and random forests (RF) classification models were built by multivariate scattering correction (MSC), first derivative (D1), SG smoothing (Savitzky-Golay, SG), and standard normal transform (SNV) four preprocessing methods. The results showed that the D-D1-SVM model discriminated optimally, with 100% accuracy in both the training and prediction sets. To simplify the model, successive projections algorithm (SPA) and competitive adaptive reweighted sampling algorithm (CARS) were applied to select feature wavelength. The multivariate data analysis revealed that the D-SPA-SVM model had the best performance, with an accuracy of 95.2% and 93% for the training and prediction sets, respectively. This study could provide technical support for rapid and non-destructive identification of hawthorn origin.

     

/

返回文章
返回