• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020
沈英,占秀兴,黄春红,等. 可见/近红外快照式多光谱成像快速测定雨生红球藻虾青素含量[J]. 食品工业科技,2023,44(16):313−320. doi: 10.13386/j.issn1002-0306.2022100108.
引用本文: 沈英,占秀兴,黄春红,等. 可见/近红外快照式多光谱成像快速测定雨生红球藻虾青素含量[J]. 食品工业科技,2023,44(16):313−320. doi: 10.13386/j.issn1002-0306.2022100108.
SHEN Ying, ZHAN Xiuxing, HUANG Chunhong, et al. Rapid Determination of Visible/Near-infrared Snapshot Multispectral Imaging Astaxanthin Content of Haematococcus pluvialis[J]. Science and Technology of Food Industry, 2023, 44(16): 313−320. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022100108.
Citation: SHEN Ying, ZHAN Xiuxing, HUANG Chunhong, et al. Rapid Determination of Visible/Near-infrared Snapshot Multispectral Imaging Astaxanthin Content of Haematococcus pluvialis[J]. Science and Technology of Food Industry, 2023, 44(16): 313−320. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022100108.

可见/近红外快照式多光谱成像快速测定雨生红球藻虾青素含量

Rapid Determination of Visible/Near-infrared Snapshot Multispectral Imaging Astaxanthin Content of Haematococcus pluvialis

  • 摘要: 为了实现快速、无损检测雨生红球藻虾青素含量,本文提出一种快照式多光谱成像检测方法。利用可见光光谱范围480~635 nm和近红光谱范围665~950 nm的2台快照式多光谱相机搭建成像系统,采集了不同生长周期下的雨生红球藻样品光谱数据。为了优化预测模型,对比了不同处理方法的组合,包括不同光谱范围、3种预处理方法、2种特征波长选择算法和2种建模方法。结果表明,可见与近红外联用光谱经一阶导数(first derivation,FD)预处理、竞争自适应重加权采样(competitive adaptive reweighted sampling,CARS)选择特征波长和反向传播(back propagation,BP)神经网络建模所构建的模型预测效果最佳,预测集相关系数(Rp)为0.9622,预测集均方根误差(root mean square error of prediction,RMSEP)为0.5126,剩余预测偏差(residual predictive deviation,RPD)为3.6726,优于仅用可见光光谱(Rp为0.9467,RMSEP为0.6065,RPD为3.1042)。说明快照式多光谱成像技术检测雨生红球藻虾青素含量是可行的,并且可见与近红外光谱联用效果更好。

     

    Abstract: In order to achieve rapid and non-destructive detection of the astaxanthin content in Haematococcus pluvialis, a snapshot multispectral imaging method was proposed in this paper. An imaging system was built by using two snapshot multispectral cameras with visible spectral ranges of 480~635 nm and near-infrared spectral ranges of 665~950 nm, respectively. The spectral data of H. pluvialis samples in different growth periods was collected. To optimize the model prediction, a great variety of methods were compared, including different spectral ranges, three preprocessing methods, two characteristic wavelength selection methods and two modeling methods. The results indicated that the combination of both visible and near-infrared spectroscopy achieved the optimial prediction performance with the pretreatment of first derivation (FD), and the characteristic band selection method of competitive adaptive reweighting sampling (CARS) and modeling method of back propagation (BP) neural network, the prediction set correlation coefficient (Rp) of 0.9622, the root mean square error (RMSEP) of 0.5126 and the residual prediction error (RPD) of 3.6726, which was superior to the visible alone (Rp of 0.9467, RMSEP of 0.6065 and RPD of 3.1042). These indicated that it was feasible to detect the content of astaxanthin in H. pluvialis by the snapshot multispectral imaging technique, and the combination of both visible and near-infrared spectroscopy could be more effective.

     

/

返回文章
返回