• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020
李媛媛,陈晓风,杨小明,等. 银杏酸的热稳定性及银杏酸C15:1热分解动力学[J]. 食品工业科技,2022,43(14):77−84. doi: 10.13386/j.issn1002-0306.2021100297.
引用本文: 李媛媛,陈晓风,杨小明,等. 银杏酸的热稳定性及银杏酸C15:1热分解动力学[J]. 食品工业科技,2022,43(14):77−84. doi: 10.13386/j.issn1002-0306.2021100297.
LI Yuanyuan, CHEN Xiaofeng, YANG Xiaoming, et al. Thermal Stability of Ginkgolic Acids and Thermal Decomposition Kinetics of Ginkgolic Acid C15:1[J]. Science and Technology of Food Industry, 2022, 43(14): 77−84. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021100297.
Citation: LI Yuanyuan, CHEN Xiaofeng, YANG Xiaoming, et al. Thermal Stability of Ginkgolic Acids and Thermal Decomposition Kinetics of Ginkgolic Acid C15:1[J]. Science and Technology of Food Industry, 2022, 43(14): 77−84. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021100297.

银杏酸的热稳定性及银杏酸C15:1热分解动力学

Thermal Stability of Ginkgolic Acids and Thermal Decomposition Kinetics of Ginkgolic Acid C15:1

  • 摘要: 为研究银杏酸的热稳定性及热分解动力学,采用高效液相色谱-电喷雾电离-质谱确定银杏酸70 ℃热分解产物,以热重分析法对银杏酸C15:1的热分解行为及其动力学规律进行考察。在静止空气气氛下,控制升温速率为5.0、10.0、15.0和20.0 ℃·min−1,记录银杏酸C15:1的热重-差示扫描量热曲线,运用Ozawa-Flynn-Wall、Friedman和Šatava-Šesták、Coats-Redfern法计算银杏酸C15:1的热分解参数。结果表明银杏酸70 ℃加热30 d后有少量银杏酚产生。银杏酸C15:1热重曲线上最明显的失重发生在第一失重阶段,失重速率峰温度243 ℃,失重率为14.37%,为银杏酸C15:1的脱羧分解。计算得出银杏酸C15:1热脱羧反应表观活化能为67.44 kJ·mol−1。银杏酸C15:1脱羧动力学模型函数系Avrami-Erofeev方程,其积分形式为G(α)=−ln(1−α)1/2,分解机理为随机成核和随后生长,反应级数n=1/2。该研究为银杏制品中银杏酸含量的控制提供帮助。

     

    Abstract: Thermal stability of ginkgolic acids and thermal decomposition kinetics ginkgolic acid C15:1 were investigated. Ginkgolic acid was heated at 70 ℃ for 30 d, a small amount of ginkgols were determined by liquid chromatography electrospray spray ionization mass spectrometry (LC-ESI-MS). The thermal decomposition behavior and kinetics of ginkgolic acid C15:1 were investigated by thermogravimetric analysis (TG) under the static air atmosphere at the heating rates of 5.0, 10.0, 15.0 and 20.0 ℃·min−1. The thermogravimetric differential scanning curve of ginkgolic acid C15:1 was recorded and the thermal decomposition parameters were calculated by Ozawa-Flynn-Wall, Friedman, Šatava-Šesták and Coats-Redfern methods. The most obvious weight loss on the TG curves of ginkgolic acid C15:1 occurred in the first weight loss stage, the peak temperature was 243 ℃, and the weight loss rate was 14.37%, which was the decarboxylation reaction of ginkgolic acid C15:1. The calculated activation energy using Ozawa-Flynn-Wall and Friedman method was 67.44 kJ·mol−1. The dynamic model function of ginkgolic acid C15:1 decarboxylation was Avrami-Erofeev equation, its integral form was G(α)=−ln(1−α)1/2, and the decomposition mechanism was random nucleation and subsequent growth, and the reaction order was n=1/2. This study would provide help for the control of silver apricot acid content in ginkgo products.

     

/

返回文章
返回