Bacteriocins and Polysaccharides from Bifidobacterium, Lactobacillus and Bacillus
-
摘要: 双歧杆菌、乳杆菌和芽孢杆菌是益生菌的重要成员,具有很大的开发潜力。其不仅能作为优势菌调节肠道微生态平衡、防治疾病,还能产生具有广谱抗菌活性的细菌素和多糖类等化合物,其中有些化合物还具有抗肿瘤和抗氧化等特性,这些特性使得这些化合物和菌株本身有望开发成为新型膳食补充剂和保健功能性食品。但许多化合物的结构、活性、机制以及安全性尚不明确。因此,本文总结了2010~2019具有益生潜力的双歧杆菌属、乳杆菌属和芽孢杆菌属细菌中分离得到的细菌素和多糖化合物,并对其分类、结构、抗菌、抗肿瘤和抗氧化等功能进行综述,为菌株及其代谢产物的开发和应用提供参考。Abstract: : Bifidobacterium, Lactobacillus and Bacillus are important members of probiotics and have great development potential. They can not only regulate the intestinal microecological balance and prevent diseases as the dominant bacteria, but also produce compounds such as bacteriocins and polysaccharides with broad-spectrum antibacterial activity. Some of these compounds also have antitumor and antioxidant properties. These characteristics make these compounds and strains to be developed into potential dietary supplements and functional foods. However, the structure, activity, mechanism and safety of many compounds are still unclear. This review summarizes the bacteriocins and polysaccharides compounds isolated from Bifidobacterium, Lactobacillus and Bacillus with probiotic potential from 2010 to 2019, and reviews their classification, structure, antibacterial, antitumor, antioxidant activities and other functions, which provide a reference for the development and application of strains and their metabolites.
-
Keywords:
- Bifidobacterium /
- Lactobacillus /
- Bacillus /
- bacteriocin /
- polysaccharide /
- antibacterial /
- antioxidant
-
目前大多数益生菌产品都是由双歧杆菌、乳杆菌和一些芽孢杆菌开发的,并广泛应用于食品工业、农业等方面[1]。其不仅能帮助维持肠道正常功能、促进食物的消化吸收,还具有增强人体免疫力的作用。嗜酸乳杆菌(Lactobacillus acidophilus)、干酪乳杆菌(Lactobacillus casei)、鼠李糖乳杆菌(Lactobacillus rhamnosus)、瑞士乳杆菌(Lactobacillus helveticus)等几种乳酸菌在预防人畜疾病方面有着广泛的研究。这些菌株具有能够改变肠道微生物群中微生物的数量,并控制肠道微生物群生态系统的功能。在早期的研究中,有相当多的证据表明双歧杆菌、乳杆菌和芽孢杆菌在动物和人体模型中的临床试验适用于多种疾病的治疗,而且这个数字还在继续增长[2]。然而,研究人员仍在不断开发新的益生菌种类,尽管益生菌早已用于改善人类健康。芽孢杆菌作为一类新的潜在益生菌,其能够降低胆固醇、抗氧化、抗癌、免疫调节和抗病毒的特点受到了人们的广泛关注,但由于一些芽孢杆菌会产生肠毒素或溶血素对人体造成危害,其安全性值得商榷[3-4]。到目前为止,美国食品药品监督管理局(food and drug administration,FDA)规定安全的芽孢杆菌主要包括:凝结芽孢杆菌(Bacillus coagulans)、解淀粉芽孢杆菌(Bacillus amyloliquefaciens)、枯草芽孢杆菌(Bacillus subtilis)和地衣芽孢杆菌(Bacillus licheniformis),他们中的一些已经开发成为膳食补充剂[5-8]。
双歧杆菌、乳杆菌和芽孢杆菌能作为功能性食品和膳食补充剂广泛应用离不开其丰富的代谢产物。几十年来,研究人员从益生菌中发现了许多具有抗菌、抗炎、抗肿瘤和抗氧化等活性的化合物。虽然益生菌的抗菌作用被认为是一种有益的特性,但在肠道内产生抗菌物质的全部益处才刚刚开始被人们所认识。将唾液乳杆菌(Lactobacillus salivarius)UCC118(含细菌素Abp118)与非细菌素产生菌株UCC118(敲除Abp118生物合成基因)进行比较,结果表明,细菌素的产生导致饮食诱导肥胖小鼠肠道菌群中类杆菌科的增加和双歧杆菌科的比例降低[9]。同时,研究人员还发现一些代谢产物包括:有机酸、香豆素和大环内酯等物质,这些物质能够发挥其抗炎、抗肿瘤和抗氧化等治疗疾病的作用,且大部分双歧杆菌、乳杆菌和芽孢杆菌能产生多种结构多样的胞外多糖[10],这些化合物在调节宿主健康和治疗疾病方面起到了重要的作用,未来有望开发成为保健食品。近些年来,研究人员已经纯化并鉴定了许多可以用于食品工业的细菌素和多糖化合物,并讨论了其应用于食品行业中的可行性。因此,本文概述了这些化合物的结构和活性并探讨了其未来应用在医药和食品工业领域中的前景。
1. 双歧杆菌属
双歧杆菌是一类革兰氏阳性,无孢子形成且不能运动的厌氧菌[11]。其被认为对宿主生物具有许多益处,如抗过敏、抗氧化、免疫调节等作用[12-14]。
1.1 细菌素类化合物
双歧杆菌具有合成细菌素的能力,表1列出了双歧杆菌产生细菌素的结构及其活性。这些由双歧杆菌产生的细菌素对金黄色葡萄球菌(Staphylococcus aureus)、枯草芽孢杆菌和戊糖生球菌(Pediococcus pentosaceus)等革兰氏阳性菌均具有抑制作用。同时,从婴儿双歧杆菌BCRC14602(Bifidobacterium infantis BCRC 14602)发酵液中分离出的细菌素Bifidin I还具有抑制肠炎沙门氏菌(Salmonella enteritidis)、大肠杆菌(Escherichia coli)、痢疾志贺氏菌(Shigella dysenteriae)和酿酒酵母(Sacchromyces cerevisiae)等革兰氏阴性菌和真菌的能力[15]。
1.2 多糖类化合物
双歧杆菌能够分泌多种杂多糖化合物,其大多由两种以上的糖或糖衍生物的重复单元组成,如表2所示。研究人员发现双歧杆菌产生的多糖化合物具有多种生物学活性并探讨了其潜在活性机制,例如:长双歧杆菌W11(Bifidobacterium longum W11)[13-14]和动物双歧杆菌RH(Bifidobacterium animalis RH)[17-19]分泌的多糖物质通过诱导小鼠体内的超氧化物歧化酶(superoxide dismutase,SOD),过氧化氢酶(catalase from micrococcus lysodeikticus,CAT)和谷胱甘肽巯基转移酶(glutathione S-transferase,GST)活性、刺激体外免疫细胞白介素-6(interleukin-6,IL-6)、白介素-10(interleukin-6,IL-10)的产生等方式发挥抗氧化和免疫调节的作用,长双歧杆菌亚种35624(Bifidobacterium longum subsp. longum 35624)产生的多糖化合物被证明能够通过促进白介素-17(interleukin-17,IL-17)细胞的释放和减少呼吸道炎症小鼠模型中肺内嗜酸性粒细胞的募集从而发挥抗炎和调节呼吸道过敏作用[12,20-21]。但是,仍有一些多糖的活性机制没有被阐明,因此明确这些多糖化合物的活性机制成为了未来研究的方向。
菌株 分类 结构(氨基酸序列) 活性 潜在机制 参考文献 Bif. longum W11 杂多糖 抗氧化
免疫调节(1)N/A
(2)促进IL-6、IL-10等细胞因子的产生从而发挥免疫调节能力。[13-14] Bif. animalis RH 杂多糖 抗氧化
免疫调节(1)诱导SOD,CAT和GST酶活性,发挥抗氧化作用。
(2)刺激体外免疫细胞增殖,稳定促炎性细胞因子的产生,发挥黏膜免疫调节作用。[17-19] Bif. longum subsp. longum 35624 杂多糖 抗炎
调节呼吸道过敏(1)促进IL-17、IL-6等淋巴细胞的释放,发挥抗炎作用。
(2)减少呼吸道炎症小鼠中肺内嗜酸性粒细胞的募集,发挥调节呼吸道过敏作用。[12,20-21] Bif. animalis. subsp
.lactis IPLA-R1杂多糖 调节肠道菌群 N/A [22-24] 注:“N/A”表示活性机制尚不明确,表4、表6同。 2. 乳杆菌属
乳杆菌属细菌是一类重要的益生菌,其通常是耐酸的杆状或球状革兰氏阳性菌[11]。同时,其还合成许多物质,例如细菌素、有机酸、多糖等,这些物质能够具有抗菌、抗氧化、抗肿瘤等活性[25-27]。乳杆菌已普遍认为是安全的,并且其广泛应用于医药、食品等方面。
2.1 细菌素类化合物
乳杆菌能够通过核糖体合成机制产生一类具有抑菌活性的细菌素类化合物,如表3所示。根据这些细菌素的结构、分子量、修饰过程等因素可将其分为Ⅰ、Ⅱ、Ⅲ、Ⅳ四种类型[28],Ⅰ型细菌素也称为羊毛硫抗生素,其分子量通常小于5 kDa,是一类酶促修饰的肽。II型细菌素是分子量小于10 kDa,热稳定的非修饰肽。Ⅲ型细菌素是分子量大于30 kDa且受热不稳定的蛋白质。Ⅳ型细菌素是复合型的大分子复合物,除蛋白质外还含有碳水化合物或类脂基团。到目前为止,已经从清酒乳杆菌(Lactobacillus sakei)、植物乳杆菌(Lactobacillus plantarum)、唾液乳杆菌、鼠李糖乳杆菌、副干酪乳杆菌(Lactobacillus paracasei)、弯曲乳杆菌(Lactobacillus curvatus)、戊糖乳杆菌(Lactobacillus pentosus)等乳杆菌属细菌的发酵液中分离出多个细菌素,其大多属于Ⅱ型细菌素。活性方面,这些细菌素表现出抗菌特性,对粪肠球菌(Enterococcus faecalis)、金黄色葡萄球菌、大肠杆菌、李斯特菌(Listeria monocytogenes)、枯草芽孢杆菌等革兰氏阳性菌具有抑制作用。其中,唾液乳杆菌、植物乳杆菌、动物乳杆菌(Lactobacillus animalis)、副干酪乳杆菌、十字乳杆菌(Lactobacillus crustorum)、戊糖乳杆菌产生的细菌素具有广泛的抑菌谱,除了对上述的革兰氏阳性菌有抑制作用外,其对沙门氏菌、大肠杆菌、肺炎克雷伯菌(Klebsiella pnenmoniae)、铜绿假单胞菌(Pseudomonas aeruginosa)等革兰氏阴性菌也具有抑制作用。同时,由戊糖乳杆菌产生的细菌素Pentocin JL-1对耐甲氧西林金黄色葡萄球菌(Methicillin-resistant Staphylococcus aureus)具有良好的抑制活性[29],这也为寻找天然食品防腐剂提供了机会。
菌株 分类 结构(氨基酸序列) 活性 参考文献 抗革兰氏
阳性菌抗革兰氏
阴性菌抗真菌 L. plantarum LPL-1 Ⅱ型细菌素 VIADKYYGNGVSCGKHTCTVDWGEAFS
CSVSHLANFGHGKC
Plantaricin LPL-1● N/A N/A [27,30] L. pentosus Ⅱ型细菌素 N'-VAKVAR
Pentocin JL-1● ● N/A [29] L. sakei subsp. sakei 2a Ⅱ型细菌素 N'-KYYGNGVHXGKHSXTV ● N/A N/A [31] N'-GKTVVRSNESLDDALRRFKRSVSKAGTIQEYRKR N'-NKAQLIENVASKTGLTKKDATAAVDAVFGS
IQDTLKQGDKVQLIXFGTFL. plantarum A-1 Ⅱ型细菌素 N'-KPAWXWYTLAMXGAGYDSGTXDYM
YSHXFGVKHSSGGGGXYH
Plantaricin ASM1● N/A N/A [32] L. salivarius 1077 Ⅱ型细菌素 N'-TNYGNGVGVPDAIMAGIIKLIFIFNIRQGYNFGKKAT
Bacteriocin L-1077● ● N/A [33] L. plantarum BM‐1 Ⅱ型细菌素 N'-KYYGNGVTXGKHSCS
Plantaricin BM-1● ● N/A [34] L. rhamnosus
CICC20975Ⅱ型细菌素 N'-KTYYGTNGXHXXKKSLXGKVR
Bacteriocin RC 20975● N/A N/A [35] L. plantarum 163 Ⅱ型细菌素 VFHAYSARGNYYGNCPANWPSCRNNYKSAGGK
Plantaricin 163● ● N/A [36] L. plantarum 510 Ⅱ型细菌素 N'-SSSLLNTAWRKFG
Plantaricin Y● N/A N/A [37] L. plantarum ZJ5 Ⅱ型细菌素 N'-KTKQQFLIKAQTQLFKVFGYTL
Plantaricin ZJ5● ● N/A [38] L. animalis TSU4 Ⅱ型细菌素 N'-SMSGFSKPHD
Bacteriocin TSU4● ● N/A [39] L. paracasei HD1-7 Ⅱ型细菌素 N'-VSNTFFAParacin 1.7 ● ● N/A [40] L. crustorum MN047 Ⅱ型细菌素 QLPWQILGIVAGMFQA
Bacteriocin MN047A● ● N/A [41] L. curvatus DN317 Ⅱ型细菌素 N'-IPYGGNGVHHGKAGDSXTVDTAIGNIGNI
GNNAASIIGGMISGWASGLAG
Curvaticin DN317● ● N/A [42] L. curvatus ACU-1 Ⅱ型细菌素 MQNTKELSVVELQQLLGGKRASFGKC
VVGAWGAGAAGLGAGVSG
Sakacin Q● ● N/A [43] L. plantarum JLA-9 Ⅱ型细菌素 FWQKMSFA
Plantaricin JLA-9● ● N/A [44] L. plantarum ZJ316 Ⅱ型细菌素 N'-SLPQN
Plantaricin ZJ316● ● N/A [45] 2.2 多糖类化合物
乳杆菌具有合成多糖化合物的能力,到目前为止已经鉴定出能够产生多糖物质的乳杆菌包括:植物乳杆菌、约氏乳杆菌(Lactobacillus johnsoni)、瑞士乳杆菌、鼠李糖乳杆菌、德氏乳杆菌(Lactobacillus delbrueckii)、嗜酸乳杆菌、弯曲乳杆菌、副干酪乳杆菌等。按其组成而言,这些多糖化合物可分为均多糖和杂多糖,均多糖仅包含一种类型的单糖,而杂多糖两种以上的糖或糖衍生物的重复单元组成,如表4所示。多糖化合物是一种天然、无毒且可生物降解的聚合物,研究表明这些多糖物质具有多种生物活性,例如:植物乳杆菌C88分泌的多糖通过清除活性氧、上调酶促和非酶促抗氧化剂活性、减少脂质过氧化从而发挥抗氧化作用[46-47],嗜酸乳杆菌DSMZ 20079分泌的多糖化合物通过对细胞凋亡机制和核转录因子κB(nuclear factor kappa-B,NF-κB)炎症信号通路的调节来发挥抗肿瘤作用[48],分离自副干酪乳杆菌DG的多糖化合物能够增强肿瘤坏死因子(tumor necrosis factor,TNF)和免疫细胞白介素-6(interleukin-6,IL-6),特别是提高趋化因子白介素-8(interleukin-8,IL-8)和趋化因子-20(chemokine ligand 20,CCL20)的表达来发挥免疫调节活性[49]。由于多糖物质的化学组成、结构和结合蛋白质的能力存在很大差异,现今研究尚未完全阐明其特性及活性机制,因此未来仍需对其机制进行研究。
菌株 分类 结构(氨基酸序列) 活性 潜在机制 参考文献 L. helveticus MB2-1 杂多糖 抗肿瘤
抗氧化N/A [25-26] 杂多糖 L. plantarum C88 杂多糖 抗氧化 通过提高抗氧化酶和非抗氧化酶活性来发挥抗氧化作用。 [46-47] L. acidophilus 20079 杂多糖 抗肿瘤 通过刺激免疫应答,使NF-κB炎症通路失活,并通过凋亡机制对肿瘤细胞产生直接的细胞毒性作用 [48] L. paracasei DG 杂多糖 增强免疫 通过增强肿瘤坏死因子和免疫细胞白介素-6及趋化因子IL-8和CCL20的基因表达,从而发挥增强免疫的特性 [49] L. plantarum MTCC 9510 杂多糖 抗肿瘤 N/A [50-51] L. johnsonii FI9785 均多糖 调节肠道环境 N/A [52-53] 杂多糖 L. rhamnosus E/N 杂多糖 抗氧化 N/A [54-55] L. plantarum C70 均多糖 抗癌
抗氧化
抗糖尿病N/A [56] L. delbrueckii ssp.
bulgaricus SRFM-1杂多糖 抗氧化 N/A [57] 杂多糖 L. helveticus LZ-R5 杂多糖 免疫调节 改善巨噬细胞的活力,增强巨噬细胞的吞噬作用以及促进RAW264.7细胞中一氧化氮和细胞因子的产生,发挥免疫调节作用。 [58] L. plantarum H31 杂多糖 抗糖尿病 上调葡萄糖转运蛋白-4和腺苷酸激活蛋白激酶基因的表达、降低α-淀粉酶的活性从而发挥抗糖尿病的作用。 [59] L. crispatus L1 均多糖 降低致病菌的黏附 通过增强防御素HBD-2的表达,从而降低致病菌在肠道内的黏附。 [60] 2.3 其它化合物
除了细菌素、多糖类化合物外,乳杆菌还能够产生脂肪酸、酚酸、生物碱等有机化合物,如:十二烷基内酯、3-羟基癸酸、3-羟基-5-十二碳烯酸、2-(2-1氨基-1-羟基乙氧基)2-甲基丙酸乙酯、3-苯基乳酸、羟基吲哚-3-丙酰胺等[61-65]。这些化合物表现出抑菌活性,对变形链球菌(Streptococcus mutans)、金黄色葡萄球菌、粪肠球菌、乳酸乳球菌(Lactococcus lactis)、大肠杆菌、铜绿假单胞菌、肺炎克雷伯菌、副溶血弧菌(Vibrio parahemolyticus)等革兰氏阳性和阴性菌的生长具有抑制作用。同时,某些化合物还对某些致病真菌有着良好的抑制作用,如:植物乳杆菌IMAU10014发酵液中分离得到的两个酚类化合物3-苯基乳酸和苯乙酸-2-丙烯基酯对甜瓜疫霉菌(Phytophthora melonis katsura)、灰霉菌(Botrytis cinerea)、尖镰孢菌(Fusarium oxysporum)等致病真菌具有抑制活性[66]。不仅如此,乳杆菌分泌的某些化合物还具有某些潜在的生物活性,例如:从干酪乳杆菌LP1发酵液中分离得到的化合物1,4-二羟基-2-萘甲酸可以抑制促炎细胞因子的表达来发挥抗炎作用[67-68]。
3. 芽孢杆菌属
芽孢杆菌属是一类产生芽孢,需氧或兼性厌氧,大多数有运动能力,无荚膜,过氧化氢酶阳性的革兰氏阳性菌[11]。芽孢杆菌已被证明可以分泌许多具有抗菌、增强免疫等活性的化合物[69-70],同时,芽孢杆菌可以在低pH的胃肠道中存活,这些特性使得芽孢杆菌属具有作为益生菌使用的潜力[3-4]。
3.1 细菌素类化合物
芽孢杆菌属是具有生物活性化合物的丰富来源,其产生的细菌素多为Ⅱ或Ⅳ型细菌素。如表5所示,芽孢杆菌产生的细菌素有着具有广泛的抑菌谱,对多种革兰氏阳性、革兰氏阴性菌、真菌具有抑制作用,例如:从解淀粉芽孢杆菌RX7菌株发酵液中纯化出的细菌素对金黄色葡萄球菌、李斯特菌、粪肠球菌等革兰氏阳性菌和大肠杆菌、鼠伤寒沙门氏菌(Salmonella typhimurium)、铜绿假单胞菌等革兰氏阴性菌均有抑制作用,同时,其对白色念珠菌(Candida albicans)也具有抑制活性,该细菌素具有很好的热稳定性并且在pH3~8范围内稳定[71],这些特性使得其可作为天然防腐剂应用于食品工业领域中。
菌株 分类 结构(氨基酸序列) 活性 潜在
机制参考
文献抗革兰氏阳性菌 抗革兰氏阴性菌 抗真菌 其他 B. amyloliquefaciens RX7 Ⅱ型细菌素 N'-XAWYDIRKLGNKGA ● ● ● N/A N/A [71] B. subtilis SSE4 Ⅳ型细菌素 ● ● ● N/A N/A [72] B. amyloliquefaciens SD-32 Ⅳ型细菌素 N/A N/A ● N/A N/A [73] B. amyloliquefaciens
SH-B10Ⅳ型细菌素 N/A N/A ● N/A N/A [74] B. amyloliquefaciens BO7 Ⅳ型细菌素 N/A N/A ● N/A N/A [75] B. coagulans L1208 Ⅱ型细菌素 N'-GEPGPAGAVGPAGKQGPPGPQGPTGPP ● ● N/A N/A N/A [76] B. amyloliquefaciens anti-CA Ⅳ型细菌素 N/A N/A ● N/A N/A [77] B. amyloliquefaciens
BO5AⅣ型细菌素 N/A N/A ● N/A N/A [78] B. subtilis Ⅳ型细菌素 ● ● ● N/A N/A [79] B. licheniformis
VPS50.2Ⅱ型细菌素 N'-WEEYNIIXQLGNKGQ ● N/A N/A N/A N/A [80] B. amyloliquefaciens FZB42 Ⅱ型细菌素 LASTLGISTAAAKKAIDIIDAASTIASIISLIGIVTGAGAISYAICVATAKTMIKKYGKKYAAAW ● N/A N/A N/A N/A [81] B. subtilis RLID 12.1 Ⅱ型细菌素 TPPQSXLXXG ● ● ● N/A N/A [82] B. amyloliquefaciens SH-B74 Ⅳ型细菌素 N/A N/A ● N/A N/A [83] B. subtilis L-Q11 Ⅱ型细菌素 MSKFDDFDLDVVKVSKQDSKITPQWKSESVCTPGCVTGILQTCFLQSITCNCRLSK
Subtilin L-Q11● N/A N/A N/A N/A [84] B. amyloliquefaciens
K14Ⅱ型细菌素 N'-HYDPGDDSGNTG ● ● N/A N/A N/A [85] B. subtilis CSB138 Ⅱ型细菌素 GLEETVYIYGANMXS
P138c● ● N/A N/A N/A [86] B. licheniformis
KCB14S006Ⅳ型细菌素 N/A N/A ● 对海拉细胞具有细胞毒活性。 N/A [87] B. subtilis
109GGC020Ⅳ型细菌素 ● N/A N/A N/A N/A [88] 3.2 多糖类化合物
产生多糖化合物的芽孢杆菌包括:地衣芽孢杆菌、解淀粉芽孢杆菌和枯草芽孢杆菌,表6总结了这些芽孢杆菌中分离得到的多糖化合物结构。同时,这些多糖化合物具有多种潜在的生理功能和生物学活性,例如:从地衣芽孢杆菌8-37-0-1纯化得到的多糖物质具有通过刺激淋巴细胞增殖从而发挥免疫调节作用,解淀粉芽孢杆菌JN4产生的胞外多糖具有抗抗肠毒素性大肠杆菌在肠道内的定植的作用,枯草芽孢杆菌AF17分泌的多糖具有抗氧化作用 [69,89-90]。这些能力使这些生物聚合物在医药、食品、保健等领域具有巨大的应用潜力。
3.3 其它化合物
芽孢杆菌通过葡萄糖氧化、糖酵解、三羧酸循环等途径产生大环内酯、脂肪酸、酚酸和香豆素等有机化合物,如:枯草芽孢杆菌109GGC020和解淀粉芽孢杆菌AP183产生的大环内酯类化合物Macrolactin W、Macrolactin F、Macrolactin B、Gagemacrolactins和Bacillusin A。地衣芽孢杆菌MH48发酵液中分离纯化得到的苯甲酸等。这些化合物具有广谱的抗菌能力,其对金黄色葡萄球菌、唾液链球菌(Streptococcus salivarius)、肺炎克雷伯菌、铜绿假单胞菌、奇异变形杆菌(Proteus mirabilis)、黄曲霉菌(Aspergillus flavus)、白色念珠菌、尖镰孢菌等革兰氏阳性、阴性菌和真菌具有抑制作用[91-92]。同时,枯草芽孢杆菌PJS分泌的香豆素类化合物Hetiamacin B、Hetiamacin C和Hetiamacin D除了对上述的细菌和真菌具有抑制活性外,其还对耐甲氧西林金黄色葡萄球菌和耐甲氧西林表皮葡萄球菌(Methecillin-resistant Staphylococcus epidermidis)等耐药菌具有抑制作用[93]。
4. 讨论与展望
双歧杆菌、乳杆菌和芽孢杆菌作为一类食品工业中具有重要应用潜力的革兰氏阳性细菌,仅在2010~2019年间,超过50种化合物从双歧杆菌、乳杆菌和芽孢杆菌中分离得到,这些化合物根据其结构、官能团等特性可分为三种类型,即细菌素类、多糖类和其他有机化合物。这三种细菌产生的细菌素多为Ⅱ型或IV型细菌素,其对多种食源性致病菌和腐败菌均有抑制作用。同时,这三种细菌还具有产生多糖化合物的能力,研究人员发现这类多糖化合物具有免疫调节、抗氧化、抗癌等活性并阐明了其部分活性机制。此外,乳杆菌和芽孢杆菌能够产生脂肪酸、酚酸、生物碱等有机化合物,这些化合物大多数具有抗真菌活性,其中也有一些具有抗细菌的作用。虽然这些菌株及其化合物具有较好的益生作用,但是基于安全性考虑,现有研究不足以证明有些菌株和化合物能应用于食品中。有报道称某些细菌素对包括人视网膜细胞,红细胞,白细胞和肠上皮细胞在内的多种细胞具有细胞毒性[94],同时许多细菌素和多糖的结构、活性及其活性机制尚不明确,因此,仍需进行更多的研究以证明其能够在食品和医学中应用,这些研究应侧重于阐明其结构、活性以及它们之间的构效关系,同时,需要更多临床试验去评估这些化合物是否具有细胞毒性、生长抑制活性和溶血活性,从而更好的确保细菌素和多糖化合物在食品工业中的安全性和稳定性。综上所述,益生菌产生的化合物具有巨大的潜力,其抗菌特点使其可以作为天然生物防腐剂应用于食品工业中。同时,这些化合物具备的抗癌、抗炎和抗氧化等特性使得它们可以成为新型保健食品开发的重要来源。
-
表 1 双歧杆菌属产生的细菌素结构及其活性
Table 1 Structure and activity of bacteriocin produced by Bifidobacterium
表 2 双歧杆菌属产生的多糖化合物结构及其活性
Table 2 Structure and activity of polysaccharides produced by Bifidobacterium
菌株 分类 结构(氨基酸序列) 活性 潜在机制 参考文献 Bif. longum W11 杂多糖 抗氧化
免疫调节(1)N/A
(2)促进IL-6、IL-10等细胞因子的产生从而发挥免疫调节能力。[13-14] Bif. animalis RH 杂多糖 抗氧化
免疫调节(1)诱导SOD,CAT和GST酶活性,发挥抗氧化作用。
(2)刺激体外免疫细胞增殖,稳定促炎性细胞因子的产生,发挥黏膜免疫调节作用。[17-19] Bif. longum subsp. longum 35624 杂多糖 抗炎
调节呼吸道过敏(1)促进IL-17、IL-6等淋巴细胞的释放,发挥抗炎作用。
(2)减少呼吸道炎症小鼠中肺内嗜酸性粒细胞的募集,发挥调节呼吸道过敏作用。[12,20-21] Bif. animalis. subsp
.lactis IPLA-R1杂多糖 调节肠道菌群 N/A [22-24] 注:“N/A”表示活性机制尚不明确,表4、表6同。 表 3 乳杆菌属产生的细菌素结构及其活性
Table 3 Structure and activity of bacteriocin produced by Lactobacillus
菌株 分类 结构(氨基酸序列) 活性 参考文献 抗革兰氏
阳性菌抗革兰氏
阴性菌抗真菌 L. plantarum LPL-1 Ⅱ型细菌素 VIADKYYGNGVSCGKHTCTVDWGEAFS
CSVSHLANFGHGKC
Plantaricin LPL-1● N/A N/A [27,30] L. pentosus Ⅱ型细菌素 N'-VAKVAR
Pentocin JL-1● ● N/A [29] L. sakei subsp. sakei 2a Ⅱ型细菌素 N'-KYYGNGVHXGKHSXTV ● N/A N/A [31] N'-GKTVVRSNESLDDALRRFKRSVSKAGTIQEYRKR N'-NKAQLIENVASKTGLTKKDATAAVDAVFGS
IQDTLKQGDKVQLIXFGTFL. plantarum A-1 Ⅱ型细菌素 N'-KPAWXWYTLAMXGAGYDSGTXDYM
YSHXFGVKHSSGGGGXYH
Plantaricin ASM1● N/A N/A [32] L. salivarius 1077 Ⅱ型细菌素 N'-TNYGNGVGVPDAIMAGIIKLIFIFNIRQGYNFGKKAT
Bacteriocin L-1077● ● N/A [33] L. plantarum BM‐1 Ⅱ型细菌素 N'-KYYGNGVTXGKHSCS
Plantaricin BM-1● ● N/A [34] L. rhamnosus
CICC20975Ⅱ型细菌素 N'-KTYYGTNGXHXXKKSLXGKVR
Bacteriocin RC 20975● N/A N/A [35] L. plantarum 163 Ⅱ型细菌素 VFHAYSARGNYYGNCPANWPSCRNNYKSAGGK
Plantaricin 163● ● N/A [36] L. plantarum 510 Ⅱ型细菌素 N'-SSSLLNTAWRKFG
Plantaricin Y● N/A N/A [37] L. plantarum ZJ5 Ⅱ型细菌素 N'-KTKQQFLIKAQTQLFKVFGYTL
Plantaricin ZJ5● ● N/A [38] L. animalis TSU4 Ⅱ型细菌素 N'-SMSGFSKPHD
Bacteriocin TSU4● ● N/A [39] L. paracasei HD1-7 Ⅱ型细菌素 N'-VSNTFFAParacin 1.7 ● ● N/A [40] L. crustorum MN047 Ⅱ型细菌素 QLPWQILGIVAGMFQA
Bacteriocin MN047A● ● N/A [41] L. curvatus DN317 Ⅱ型细菌素 N'-IPYGGNGVHHGKAGDSXTVDTAIGNIGNI
GNNAASIIGGMISGWASGLAG
Curvaticin DN317● ● N/A [42] L. curvatus ACU-1 Ⅱ型细菌素 MQNTKELSVVELQQLLGGKRASFGKC
VVGAWGAGAAGLGAGVSG
Sakacin Q● ● N/A [43] L. plantarum JLA-9 Ⅱ型细菌素 FWQKMSFA
Plantaricin JLA-9● ● N/A [44] L. plantarum ZJ316 Ⅱ型细菌素 N'-SLPQN
Plantaricin ZJ316● ● N/A [45] 表 4 乳杆菌属产生的多糖化合物结构及其活性
Table 4 Structure and activity of polysaccharides produced by Lactobacillus
菌株 分类 结构(氨基酸序列) 活性 潜在机制 参考文献 L. helveticus MB2-1 杂多糖 抗肿瘤
抗氧化N/A [25-26] 杂多糖 L. plantarum C88 杂多糖 抗氧化 通过提高抗氧化酶和非抗氧化酶活性来发挥抗氧化作用。 [46-47] L. acidophilus 20079 杂多糖 抗肿瘤 通过刺激免疫应答,使NF-κB炎症通路失活,并通过凋亡机制对肿瘤细胞产生直接的细胞毒性作用 [48] L. paracasei DG 杂多糖 增强免疫 通过增强肿瘤坏死因子和免疫细胞白介素-6及趋化因子IL-8和CCL20的基因表达,从而发挥增强免疫的特性 [49] L. plantarum MTCC 9510 杂多糖 抗肿瘤 N/A [50-51] L. johnsonii FI9785 均多糖 调节肠道环境 N/A [52-53] 杂多糖 L. rhamnosus E/N 杂多糖 抗氧化 N/A [54-55] L. plantarum C70 均多糖 抗癌
抗氧化
抗糖尿病N/A [56] L. delbrueckii ssp.
bulgaricus SRFM-1杂多糖 抗氧化 N/A [57] 杂多糖 L. helveticus LZ-R5 杂多糖 免疫调节 改善巨噬细胞的活力,增强巨噬细胞的吞噬作用以及促进RAW264.7细胞中一氧化氮和细胞因子的产生,发挥免疫调节作用。 [58] L. plantarum H31 杂多糖 抗糖尿病 上调葡萄糖转运蛋白-4和腺苷酸激活蛋白激酶基因的表达、降低α-淀粉酶的活性从而发挥抗糖尿病的作用。 [59] L. crispatus L1 均多糖 降低致病菌的黏附 通过增强防御素HBD-2的表达,从而降低致病菌在肠道内的黏附。 [60] 表 5 芽孢杆菌属产生的细菌素结构及其活性
Table 5 Structure and activity of bacteriocin produced by Bacillus
菌株 分类 结构(氨基酸序列) 活性 潜在
机制参考
文献抗革兰氏阳性菌 抗革兰氏阴性菌 抗真菌 其他 B. amyloliquefaciens RX7 Ⅱ型细菌素 N'-XAWYDIRKLGNKGA ● ● ● N/A N/A [71] B. subtilis SSE4 Ⅳ型细菌素 ● ● ● N/A N/A [72] B. amyloliquefaciens SD-32 Ⅳ型细菌素 N/A N/A ● N/A N/A [73] B. amyloliquefaciens
SH-B10Ⅳ型细菌素 N/A N/A ● N/A N/A [74] B. amyloliquefaciens BO7 Ⅳ型细菌素 N/A N/A ● N/A N/A [75] B. coagulans L1208 Ⅱ型细菌素 N'-GEPGPAGAVGPAGKQGPPGPQGPTGPP ● ● N/A N/A N/A [76] B. amyloliquefaciens anti-CA Ⅳ型细菌素 N/A N/A ● N/A N/A [77] B. amyloliquefaciens
BO5AⅣ型细菌素 N/A N/A ● N/A N/A [78] B. subtilis Ⅳ型细菌素 ● ● ● N/A N/A [79] B. licheniformis
VPS50.2Ⅱ型细菌素 N'-WEEYNIIXQLGNKGQ ● N/A N/A N/A N/A [80] B. amyloliquefaciens FZB42 Ⅱ型细菌素 LASTLGISTAAAKKAIDIIDAASTIASIISLIGIVTGAGAISYAICVATAKTMIKKYGKKYAAAW ● N/A N/A N/A N/A [81] B. subtilis RLID 12.1 Ⅱ型细菌素 TPPQSXLXXG ● ● ● N/A N/A [82] B. amyloliquefaciens SH-B74 Ⅳ型细菌素 N/A N/A ● N/A N/A [83] B. subtilis L-Q11 Ⅱ型细菌素 MSKFDDFDLDVVKVSKQDSKITPQWKSESVCTPGCVTGILQTCFLQSITCNCRLSK
Subtilin L-Q11● N/A N/A N/A N/A [84] B. amyloliquefaciens
K14Ⅱ型细菌素 N'-HYDPGDDSGNTG ● ● N/A N/A N/A [85] B. subtilis CSB138 Ⅱ型细菌素 GLEETVYIYGANMXS
P138c● ● N/A N/A N/A [86] B. licheniformis
KCB14S006Ⅳ型细菌素 N/A N/A ● 对海拉细胞具有细胞毒活性。 N/A [87] B. subtilis
109GGC020Ⅳ型细菌素 ● N/A N/A N/A N/A [88] -
[1] WILLIAMS N T. Probiotics[J]. American Journal of Health-System Pharmacy,2010,67(6):449−458. doi: 10.2146/ajhp090168
[2] KALAM A, MANOBENDRO S, LI T, et al. Probiotic species in the modulation of gut microbiota: An overview[J]. BioMed Research International,2018,8:9478630.
[3] ELSHAGHABEE F M F, ROKANA N, GULHANE R D, et al. Bacillus as potential probiotics: Status, concerns, and future perspectives[J]. Frontiers in Microbiology,2017,8:1490. doi: 10.3389/fmicb.2017.01490
[4] LEE N K, KIM W S, PAIK H D. Bacillus strains as human probiotics: Characterization, safety, microbiome and probiotic carrier[J]. Food Science and Biotechnology,2019,28(5):1297−1305. doi: 10.1007/s10068-019-00691-9
[5] TIMOTHY S. Notice to US food and drug administration that Bacillus coagulans GBI-30, 6086 is generally recognized as safe for use in non-exempt term infant formula[EB/OL]. 2016-07-11[2020-11-24].https://www.fda.gov/media/100025/download.
[6] ADAMS C. Generally recognized as safe (gras) conclusion for the use of Bacillus subtilis de111 in foods[EB/OL]. 2018-12-03[2020-11-24].https://www.fda.gov/media/132389/download.
[7] SEWALT V. Subtilisin enzyme preparation derived from Bacillus subtilis expressing a subtilisin gene from Bacillus amyloli quefaciens is generally recognized as safe for use in food proces[EB/OL]. 2017-06-16[2020-11-24].https://www.fda.gov/media/107462/download.
[8] DENNIS M. Glutaminase from Bacillus licheniformis produced in Bacillus licheniformis[EB/OL]. 2018-10-26[2020-11-24]. https://www.fda.gov/media/124998/download.
[9] MURPHY E F, COTTER P D, HOGAN A, et al. Divergent metabolic outcomes arising from targeted manipulation of the gut microbiota in diet-induced obesity[J]. Gut,2013,62(2):220−226. doi: 10.1136/gutjnl-2011-300705
[10] GEEL-SCHUTTEN G, FLESCH F, BRINK B T, et al. Screening and characterization of Lactobacillus strains producing large amounts of exopolysaccharides[J]. Applied Microbiology and Biotechnology,1998,50(6):697−703. doi: 10.1007/s002530051353
[11] SCHEPPER J D, IRWIN R, KANG J, et al. Probiotics in gut-bone signaling[J]. Understanding the Gut-bone Signaling Axis,2017:225−247.
[12] SCHIAVI E, PLATTNER S, RODRIGUEZ-PEREZ N, et al. Exopolysaccharide from Bifidobacterium longum subsp. longum 35624™ modulates murine allergic airway responses[J]. Beneficial Microbes,2018,9(5):761−773. doi: 10.3920/BM2017.0180
[13] INTURRI R, MOLINARO A, LORENZO F D, et al. Chemical and biological properties of the novel exopolysaccharide produced by a probiotic strain of Bifidobacterium longum[J]. Carbohydrate Polymers,2017,174:1172−1180. doi: 10.1016/j.carbpol.2017.07.039
[14] INTURRI R, MANGANO K, SANTAGATI M, et al. Immunomodulatory effects of Bifidobacterium longum W11 produced exopolysaccharide on cytokine production[J]. Current Pharmaceutical Biotechnology,2017,18(11):883−889.
[15] CHEIKHYOUSSEF A, CHEIKHYOUSSEF N, CHEN H, et al. Bifidin I–A new bacteriocin produced by Bifidobacterium infantis BCRC 14602: Purification and partial amino acid sequence[J]. Food Control,2010,21(5):746−753. doi: 10.1016/j.foodcont.2009.11.003
[16] PEI J, YUAN Y, YUE T. Characterization of bacteriocin bificin C6165: A novel bacteriocin[J]. Journal of Applied Microbiology,2013,114(5):1273−1284. doi: 10.1111/jam.12145
[17] LIU L, LI H, XU R H, et al. Expolysaccharides from Bifidobacterium animalis RH activates RAW 264.7 macrophages through toll-like receptor 4[J]. Food and Agricultural Immunology,2017,28(1):149−161. doi: 10.1080/09540105.2016.1230599
[18] SHANG N, XU R, LI P. Structure characterization of an exopolysaccharide produced by Bifidobacterium animalis RH[J]. Carbohydrate Polymers,2013,91(1):128−134. doi: 10.1016/j.carbpol.2012.08.012
[19] XU R, SHANG N, LI P. In vitro and in vivo antioxidant activity of exopolysaccharide fractions from Bifidobacterium animalis RH[J]. Anaerobe,2011,17(5):226−231. doi: 10.1016/j.anaerobe.2011.07.010
[20] ALTMANN F, KOSMA P, O’CALLAGHAN A, et al. Genome analysis and characterisation of the exopolysaccharide produced by Bifidobacterium longum subsp. longum 35624™[J]. PLoS One,2016,11(9):e0162983. doi: 10.1371/journal.pone.0162983
[21] SCHIAVI E, GLEINSER M, MOLLOY E, et al. The surface-associated exopolysaccharide of Bifidobacterium longum 35624 plays an essential role in dampening host proinflammatory responses and repressing local TH17 responses[J]. Applied and Environmental Microbiology,2016,82(24):7185−7196. doi: 10.1128/AEM.02238-16
[22] LEIVERS S, HIDALGO-CANTABRANA C, ROBINSON G, et al. Structure of the high molecular weight exopolysaccharide produced by Bifidobacterium animalis subsp. lactis IPLA-R1 and sequence analysis of its putative eps cluster[J]. Carbohydrate Research,2011,346(17):2710−2717. doi: 10.1016/j.carres.2011.09.010
[23] RUAS-MADIEDO P, MEDRANO M, SALAZAR N, et al. Exopolysaccharides produced by Lactobacillus and Bifidobacterium strains abrogate in vitro the cytotoxic effect of bacterial toxins on eukaryotic cells[J]. Journal of Applied Microbiology,2010,109(6):2079−2086. doi: 10.1111/j.1365-2672.2010.04839.x
[24] SALAZAR N, RUAS-MADIEDO P, KOLIDA S, et al. Exopolysaccharides produced by Bifidobacterium longum IPLA E44 and Bifidobacterium animalis subsp. lactis IPLA R1 modify the composition and metabolic activity of human fecal microbiota in pH-controlled batch cultures[J]. International Journal of Food Microbiology,2009,135(3):260−267. doi: 10.1016/j.ijfoodmicro.2009.08.017
[25] LI W, XIA X, TANG W, et al. Structural characterization and anticancer activity of cell-bound exopolysaccharide from Lactobacillus helveticus MB2-1[J]. Journal of Agricultural and Food Chemistry,2015,63(13):3454−3463. doi: 10.1021/acs.jafc.5b01086
[26] LI W, JI J, TANG W, et al. Characterization of an antiproliferative exopolysaccharide (LHEPS-2) from Lactobacillus helveticus MB2-1[J]. Carbohydrate Polymers,2014,105:334−340. doi: 10.1016/j.carbpol.2014.01.093
[27] WANG Y, QIN Y, XIE Q, et al. Purification and characterization of plantaricin LPL-1, a novel class IIa bacteriocin produced by Lactobacillus plantarum LPL-1 isolated from fermented fish[J]. Frontiers in Microbiology,2018,9:2276. doi: 10.3389/fmicb.2018.02276
[28] SIMONS A, ALHANOUT K, DUVAL R E. Bacteriocins, antimicrobial peptides from bacterial origin: Overview of their biology and their impact against multidrug-resistant bacteria[J]. Microorganisms,2020,8(5):639. doi: 10.3390/microorganisms8050639
[29] JIANG H, ZOU J, CHENG H, et al. Purification, characterization, and mode of action of pentocin JL-1, a novel bacteriocin isolated from Lactobacillus pentosus, against drug-resistant Staphylococcus aureus[J]. Biomed Research International,2017,2017(2):1−11.
[30] WANG Y, QIN Y, ZHANG Y, et al. Antibacterial mechanism of plantaricin LPL-1, a novel class IIa bacteriocin against Listeria monocytogenes[J]. Food Control,2019,97:87−93. doi: 10.1016/j.foodcont.2018.10.025
[31] CARVALHO K, BAMBIRRA F, KRUGER M F, et al. Antimicrobial compounds produced by Lactobacillus sakei subsp. sakei 2a, a bacteriocinogenic strain isolated from a Brazilian meat product[J]. Journal of Industrial Microbiology and Biotechnology,2010,37(4):381−390. doi: 10.1007/s10295-009-0684-y
[32] HATA T, TANAKA R, OHMOMO S. Isolation and characterization of plantaricin ASM1: A new bacteriocin produced by Lactobacillus plantarum A-1[J]. International Journal of Food Microbiology,2010,137(1):94−99. doi: 10.1016/j.ijfoodmicro.2009.10.021
[33] SVETOCH E A, ERUSLANOV B V, LEVCHUK V P, et al. Isolation of Lactobacillus salivarius 1077 (NRRL B-50053) and characterization of its bacteriocin, including the antimicrobial activity spectrum[J]. Applied and Environmental Microbiology,2011,77(8):2749−2754. doi: 10.1128/AEM.02481-10
[34] ZHANG H, LIU L, HAO Y, et al. Isolation and partial characterization of a bacteriocin produced by Lactobacillus plantarum BM-1 isolated from a traditionally fermented Chinese meat product[J]. Microbiology and Immunology,2013,57(11):746−755. doi: 10.1111/1348-0421.12091
[35] YUE T, PEI J, YUAN Y. Purification and characterization of anti-alicyclobacillus bacteriocin produced by Lactobacillus rhamnosus[J]. Journal of Food Protection,2013,76(9):1575−1581. doi: 10.4315/0362-028X.JFP-12-496
[36] HU M, ZHAO H, ZHANG C, et al. Purification and characterization of plantaricin 163, a novel bacteriocin produced by Lactobacillus plantarum 163 isolated from traditional Chinese fermented vegetables[J]. Journal of Agricultural and Food Chemistry,2013,61(47):11676−11682. doi: 10.1021/jf403370y
[37] CHEN Y, WANG Y, CHOW Y, et al. Purification and characterization of plantaricin Y, a novel bacteriocin produced by Lactobacillus plantarum 510[J]. Archives of Microbiology,2014,196(3):193−199. doi: 10.1007/s00203-014-0958-2
[38] SONG D F, ZHU M Y, GU Q. Purification and characterization of plantaricin ZJ5, a new bacteriocin produced by Lactobacillus plantarum ZJ5[J]. PLoS One,2014,9(8):e105549. doi: 10.1371/journal.pone.0105549
[39] SAHOO T K, JENA P K, PATEL A K, et al. Purification and molecular characterization of the novel highly potent bacteriocin TSU4 produced by Lactobacillus animalis TSU4[J]. Applied Biochemistry and Biotechnology,2015,177(1):90−104. doi: 10.1007/s12010-015-1730-z
[40] GE J, SUN Y, XIN X, et al. Purification and partial characterization of a novel bacteriocin synthesized by Lactobacillus paracasei HD1-7 isolated from Chinese sauerkraut juice[J]. Scientific Reports,2016,6(1):1−7. doi: 10.1038/s41598-016-0001-8
[41] YI L, DANG Y, WU J, et al. Purification and characterization of a novel bacteriocin produced by Lactobacillus crustorum MN047 isolated from koumiss from Xinjiang, China[J]. Journal of Dairy Science,2016,99(9):7002−7015. doi: 10.3168/jds.2016-11166
[42] ZOMMITI M, ALMOHAMMED H, FERCHICHI M. Purification and characterization of a novel anti-campylobacter bacteriocin produced by Lactobacillus curvatus DN317[J]. Probiotics and Antimicrobial Proteins,2016,8(4):191−201. doi: 10.1007/s12602-016-9237-7
[43] RIVAS F P, CASTRO M P, VALLEJO M, et al. Sakacin Q produced by Lactobacillus curvatus ACU-1: Functionality characterization and antilisterial activity on cooked meat surface[J]. Meat Science,2014,97(4):475−479. doi: 10.1016/j.meatsci.2014.03.003
[44] ZHAO S, HAN J, BIE X, et al. Purification and characterization of plantaricin JLA-9: A novel bacteriocin against Bacillus spp. produced by Lactobacillus plantarum JLA-9 from Suan-Tsai, a traditional Chinese fermented cabbage[J]. Journal of Agricultural and Food Chemistry,2016,64(13):2754−2764. doi: 10.1021/acs.jafc.5b05717
[45] CHEN L, GU Q, LI P, et al. Purification and characterization of plantaricin ZJ316, a novel bacteriocin against Listeria monocytogenes from Lactobacillus plantarum ZJ316[J]. Journal of Food Protection,2018,81(12):1929−1935. doi: 10.4315/0362-028X.JFP-18-306
[46] FONTANA C, LI S, YANG Z, et al. Structural studies of the exopolysaccharide from Lactobacillus plantarum C88 using NMR spectroscopy and the program CASPER[J]. Carbohydrate Research,2015,402:87−94. doi: 10.1016/j.carres.2014.09.003
[47] ZHANG L, LIU C, LI D, et al. Antioxidant activity of an exopolysaccharide isolated from Lactobacillus plantarum C88[J]. International Journal of Biological Macromolecules,2013,54:270−275. doi: 10.1016/j.ijbiomac.2012.12.037
[48] EL-DEEB N M, YASSIN A M, AL-MADBOLY L A, et al. A novel purified Lactobacillus acidophilus 20079 exopolysaccharide, LA-EPS-20079, molecularly regulates both apoptotic and NF-κB inflammatory pathways in human colon cancer[J]. Microbial Cell Factories,2018,17(1):1−15. doi: 10.1186/s12934-017-0850-2
[49] BALZARETTI S, TAVERNITI V, GUGLIELMETTI S, et al. A novel rhamnose-rich hetero-exopolysaccharide isolated from Lactobacillus paracasei DG activates THP-1 human monocytic cells[J]. Applied and Environmental Microbiology,2017,83(3):e02702−16.
[50] ISMAIL B, NAMPOOTHIRI K. Exposition of antitumour activity of a chemically characterized exopolysaccharide from a probiotic Lactobacillus plantarum MTCC 9510[J]. Biologia,2013,68(6):1041−1047. doi: 10.2478/s11756-013-0275-2
[51] ISMAIL B, NAMPOOTHIRI K M. Production, purification and structural characterization of an exopolysaccharide produced by a probiotic Lactobacillus plantarum MTCC 9510[J]. Archives of Microbiology,2010,192(12):1049−1057. doi: 10.1007/s00203-010-0636-y
[52] DERTLI E, COLQUHOUN I J, GUNNING A P, et al. Structure and biosynthesis of two exopolysaccharides produced by Lactobacillus johnsonii FI9785[J]. Journal of Biological Chemistry,2013,288(44):31938−31951. doi: 10.1074/jbc.M113.507418
[53] LA RAGIONE R M, NARBAD A, GASSON M J, et al. In vivo characterization of Lactobacillus johnsonii FI9785 for use as a defined competitive exclusion agent against bacterial pathogens in poultry[J]. Letters in Applied Microbiology,2004,38(3):197−205. doi: 10.1111/j.1472-765X.2004.01474.x
[54] BERECKA M P, CHOMA A, WAŚKO A, et al. Physicochemical characterization of exopolysaccharides produced by Lactobacillus rhamnosus on various carbon sources[J]. Carbohydrate Polymers,2015,117:501−509. doi: 10.1016/j.carbpol.2014.10.006
[55] BERECKA M P, WASKO A, SZWAJGIER D, et al. Bifidogenic and antioxidant activity of exopolysaccharides produced by Lactobacillus rhamnosus E/N cultivated on different carbon sources[J]. Polish Journal of Microbiology,2013,62(2):181−189. doi: 10.33073/pjm-2013-023
[56] AYYASH M, ABU-JDAYIL B, ITSARANUWAT P, et al. Characterization, bioactivities, and rheological properties of exopolysaccharide produced by novel probiotic Lactobacillus plantarum C70 isolated from camel milk[J]. International Journal of Biological Macromolecules,2020,144:938−946. doi: 10.1016/j.ijbiomac.2019.09.171
[57] TANG W, DONG M, WANG W, et al. Structural characterization and antioxidant property of released exopolysaccharides from Lactobacillus delbrueckii ssp. bulgaricus SRFM-1[J]. Carbohydrate Polymers,2017,173:654−664. doi: 10.1016/j.carbpol.2017.06.039
[58] YOU X, LI Z, MA K, et al. Structural characterization and immunomodulatory activity of an exopolysaccharide produced by Lactobacillus helveticus LZ-R-5[J]. Carbohydrate Polymers,2020,235:115977. doi: 10.1016/j.carbpol.2020.115977
[59] HUANG Z, LIN F, ZHU X, et al. An exopolysaccharide from Lactobacillus plantarum H31 in pickled cabbage inhibits pancreas α-amylase and regulating metabolic markers in HepG2 cells by AMPK/PI3K/Akt pathway[J]. International Journal of Biological Macromolecules,2020,143:775−784. doi: 10.1016/j.ijbiomac.2019.09.137
[60] DONNARUMMA G, MOLINARO A, CIMINI D, et al. Lactobacillus crispatus L1: High cell density cultivation and exopolysaccharide structure characterization to highlight potentially beneficial effects against vaginal pathogens[J]. Bmc Microbiology,2014,14(1):137−149. doi: 10.1186/1471-2180-14-137
[61] YANG E J, KIM Y S, CHANG H C. Purification and characterization of antifungal δ-dodecalactone from Lactobacillus plantarum AF1 isolated from kimchi[J]. Journal of Food Protection,2011,74(4):651−657. doi: 10.4315/0362-028X.JFP-10-512
[62] LIN T H, PAN T M. Characterization of an antimicrobial substance produced by Lactobacillus plantarum NTU 102[J]. Journal of Microbiology, Immunology and Infection,2019,52(3):409−417. doi: 10.1016/j.jmii.2017.08.003
[63] JEEVARATNAM K, VIDHYASAGAR V, AGALIYA P J, et al. Characterization of an antibacterial compound, 2-hydroxyl indole-3-propanamide, produced by lactic acid bacteria isolated from fermented batter[J]. Applied Biochemistry and Biotechnology,2015,177(1):137−147. doi: 10.1007/s12010-015-1733-9
[64] SUZUKI Y, KOSAKA M, SHINDO K, et al. Identification of antioxidants produced by Lactobacillus plantarum[J]. Bioscience, Biotechnology and Biochemistry,2013,77(6):1299−1302. doi: 10.1271/bbb.121006
[65] RYU E H, YANG E J, WOO E R, et al. Purification and characterization of antifungal compounds from Lactobacillus plantarum HD1 isolated from kimchi[J]. Food Microbiology,2014,41:19−26. doi: 10.1016/j.fm.2014.01.011
[66] WANG H K, YAN Y H, WANG J M, et al. Production and characterization of antifungal compounds produced by Lactobacillus plantarum IMAU10014[J]. PLoS One,2012,7(1):e29452. doi: 10.1371/journal.pone.0029452
[67] KANG J E, KIM T J, MOON G S. A novel Lactobacillus casei LP1 producing 1, 4-dihydroxy-2-naphthoic acid, a bifidogenic growth stimulator[J]. Preventive Nutrition and Food Science,2015,20(1):78−81. doi: 10.3746/pnf.2015.20.1.78
[68] OKADA Y, TSUZUKI Y, NARIMATSU K, et al. 1, 4-Dihydroxy-2-naphthoic acid from Propionibacterium freudenreichii reduces inflammation in interleukin-10-deficient mice with colitis by suppressing macrophage-derived proinflammatory cytokines[J]. Journal of Leukocyte Biology,2013,94(3):473−480. doi: 10.1189/jlb.0212104
[69] LIU C, LU J, LU L, et al. Isolation, structural characterization and immunological activity of an exopolysaccharide produced by Bacillus licheniformis 8-37-0-1[J]. Bioresource Technology,2010,101(14):5528−5533. doi: 10.1016/j.biortech.2010.01.151
[70] AL-THUBIANI A S A, MAHER Y A, FATHI A, et al. Identification and characterization of a novel antimicrobial peptide compound produced by Bacillus megaterium strain isolated from oral microflora[J]. Saudi Pharmaceutical Journal,2018,26(8):1089−1097. doi: 10.1016/j.jsps.2018.05.019
[71] LIM K B, BALOLONG M P, KIM S H, et al. Isolation and characterization of a broad spectrum bacteriocin from Bacillus amyloliquefaciens RX7[J]. Biomed Research International,2016,2016:7.
[72] THASANA N, PRAPAGDEE B, RANGKADILOK N, et al. Bacillus subtilis SSE4 produces subtulene A, a new lipopeptide antibiotic possessing an unusual C15 unsaturated β-amino acid[J]. Febs Letters,2010,584(14):3209−3214. doi: 10.1016/j.febslet.2010.06.005
[73] TANAKA K, ISHIHARA A, NAKAJIMA H. Isolation of anteiso-C17, iso-C17, iso-C16, and iso-C15 bacillomycin D from Bacillus amyloliquefaciens SD-32 and their antifungal activities against plant pathogens[J]. Journal of Agricultural and Food Chemistry,2014,62(7):1469−1476. doi: 10.1021/jf404531t
[74] CHEN L, WANG N, WANG X, et al. Characterization of two anti-fungal lipopeptides produced by Bacillus amyloliquefaciens SH-B10[J]. Bioresource Technology,2010,101(22):8822−8827. doi: 10.1016/j.biortech.2010.06.054
[75] ROMANO A, VITULLO D, PIETRO A D, et al. Antifungal lipopeptides from Bacillus amyloliquefaciens strain BO7[J]. Journal of Natural Products,2011,74(2):145−151. doi: 10.1021/np100408y
[76] FU L, WANG C, RUAN X, et al. Preservation of large yellow croaker (Pseudosciaena crocea) by Coagulin L1208, a novel bacteriocin produced by Bacillus coagulans L1208[J]. International Journal of Food Microbiology,2018,266:60−68. doi: 10.1016/j.ijfoodmicro.2017.11.012
[77] SONG B, RONG Y J, ZHAO M X, et al. Antifungal activity of the lipopeptides produced by Bacillus amyloliquefaciens anti-CA against Candida albicans isolated from clinic[J]. Applied Microbiology and Biotechnology,2013,97(16):7141−7150. doi: 10.1007/s00253-013-5000-0
[78] ROMANO A, VITULLO D, SENATORE M, et al. Antifungal cyclic lipopeptides from Bacillus amyloliquefaciens strain BO5A[J]. Journal of Natural Products,2013,76(11):2019−2025. doi: 10.1021/np400119n
[79] TAREQ F S, LEE M A, LEE H S, et al. Gageostatins A–C, antimicrobial linear lipopeptides from a marine Bacillus subtilis[J]. Marine Drugs,2014,12(2):871−885. doi: 10.3390/md12020871
[80] BERIĆ T, STANKOVIĆ S, DRAGANIĆ V, et al. Novel antilisterial bacteriocin licheniocin 50.2 from Bacillus licheniformis VPS 50.2 isolated from soil sample[J]. Journal of Applied Microbiology,2014,116(3):502−510. doi: 10.1111/jam.12393
[81] SCHOLZ R, VATER J, BUDIHARJO A, et al. Amylocyclicin, a novel circular bacteriocin produced by Bacillus amyloliquefaciens FZB42[J]. Journal of Bacteriology,2014,196(10):1842−1852. doi: 10.1128/JB.01474-14
[82] RAMACHANDRAN R, CHALASANI A G, LAL R, et al. A broad-spectrum antimicrobial activity of Bacillus subtilis RLID 12.1[J]. The Scientific World Journal,2014,2014:968487.
[83] MA Z, HU J, WANG X, et al. NMR spectroscopic and MS/MS spectrometric characterization of a new lipopeptide antibiotic bacillopeptin B1 produced by a marine sediment-derived Bacillus amyloliquefaciens SH-B74[J]. The Journal of Antibiotics,2014,67(2):175−178. doi: 10.1038/ja.2013.89
[84] QIN Y, WANG Y, HE Y, et al. Characterization of subtilin L-Q11, a novel class I bacteriocin synthesized by Bacillus subtilis L-Q11 isolated from orchard soil[J]. Frontiers in Microbiology,2019,10:484. doi: 10.3389/fmicb.2019.00484
[85] REGMI S, CHOI Y H, CHOI Y S, et al. Antimicrobial peptide isolated from Bacillus amyloliquefaciens K14 revitalizes its use in combinatorial drug therapy[J]. Folia Microbiologica,2017,62(2):127−138. doi: 10.1007/s12223-016-0479-2
[86] REGMI S, CHOI Y S, CHOI Y H, et al. Antimicrobial peptide from Bacillus subtilis CSB138: Characterization, killing kinetics, and synergistic potency[J]. International Microbiology,2017,20:43−53.
[87] SON S, KO S K, JANG M, et al. New cyclic lipopeptides of the iturin class produced by saltern-derived Bacillus sp. KCB14S006[J]. Marine Drugs,2016,14(4):72. doi: 10.3390/md14040072
[88] TAREQ F S, SHIN H J. Bacilotetrins A and B, anti-staphylococcal cyclic-lipotetrapeptides from a marine-derived Bacillus subtilis[J]. Journal of Natural Products,2017,80(11):2889−2892. doi: 10.1021/acs.jnatprod.7b00356
[89] BOUALLEGUE A, CASILLO A, CHAARI F, et al. Levan from a new isolated Bacillus subtilis AF17: Purification, structural analysis and antioxidant activities[J]. International Journal of Biological Macromolecules,2020,144:316−324. doi: 10.1016/j.ijbiomac.2019.12.108
[90] CAI G, LIU Y, LI X, et al. New levan-type exopolysaccharide from Bacillus amyloliquefaciens as an antiadhesive agent against enterotoxigenic Escherichia coli[J]. Journal of Agricultural and Food Chemistry,2019,67(28):8029−8034. doi: 10.1021/acs.jafc.9b03234
[91] TAREQ F S, KIM J H, LEE M A, et al. Antimicrobial gageomacrolactins characterized from the fermentation of the marine-derived bacterium Bacillus subtilis under optimum growth conditions[J]. Journal of Agricultural and Food Chemistry,2013,61(14):3428−3434. doi: 10.1021/jf4009229
[92] JEONG M H, LEE Y S, CHO J Y, et al. Isolation and characterization of metabolites from Bacillus licheniformis MH48 with antifungal activity against plant pathogens[J]. Microbial Pathogenesis,2017,110:645−653. doi: 10.1016/j.micpath.2017.07.027
[93] LIU S, HAN X, JIANG Z, et al. Hetiamacin B–D, new members of amicoumacin group antibiotics isolated from Bacillus subtilis PJS[J]. The Journal of Antibiotics,2016,69(10):769−772. doi: 10.1038/ja.2016.3
[94] SOLTANI S, HAMMAMI R, COTTER P D, et al. Bacteriocins as a new generation of antimicrobials: Toxicity aspects and regulations[J]. Fems Microbiology Reviews,2021,45(1):1−24.
-
期刊类型引用(9)
1. 张亚楠,纪雪微,宋立立,张连水. 细菌素的研究与应用进展. 中国饲料. 2024(17): 19-25 . 百度学术 2. 王春辉,罗焱鹏,王之盛,薛白,王立志,邹华围,胡瑞,姜雅慧,肖鉴鑫,彭全辉. 酸化处理对代乳粉乳品质和微生物群落的影响. 中国奶牛. 2024(09): 6-12 . 百度学术 3. 迟茜文,解文利,姚梦玮,李玉迁,魏洪. 乳双歧杆菌对旋毛虫感染小鼠炎性细胞因子及肠道菌群的影响. 医学动物防制. 2023(03): 282-287+293 . 百度学术 4. 周易,黄雨晴,叶松. 探讨不同浓度的清郁和降汤对反流性食管炎大鼠肠道菌群的影响. 微生物学报. 2023(10): 3987-3999 . 百度学术 5. 唐远谋,孙劲松,庞紫琳,刘洋,潘攀,王新惠. 高通量测序探究乳酸钠对冷鲜牛肉细菌群落结构的影响. 中国调味品. 2022(06): 33-37 . 百度学术 6. 宋文静,宋琼莉,陈小连,刘林秀,谭佳,邹志恒,魏立民,熊平文,张艳,孙瑞萍. 山香圆叶提取物对湿热条件下文昌鸡生长性能、屠宰性能、血清免疫和抗氧化功能及肠道微生态的影响. 动物营养学报. 2022(08): 5048-5062 . 百度学术 7. 陈皓祥,邓益琴,程长洪,马红玲,郭志勋,冯娟. 养殖池塘14株芽孢杆菌的分离鉴定及抑菌效果. 热带生物学报. 2022(06): 605-613 . 百度学术 8. 丁开欣,袁浩,刘敏,王军,郑亚,王玉平,郭庆红. 肠道微生态疗法在肝硬化治疗中的研究进展. 实用临床医药杂志. 2022(22): 132-138 . 百度学术 9. 张淑娟,牛铮,阚子斐,张依玲,徐沙沙,邹宏,张静怡,宋振辉. 益生菌防治猪流行性腹泻研究进展. 中国兽医杂志. 2021(08): 64-69 . 百度学术 其他类型引用(11)
计量
- 文章访问数: 234
- HTML全文浏览量: 75
- PDF下载量: 38
- 被引次数: 20