• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020

基于近红外光谱技术(NIRS)对工夫红茶茶色素含量测定

刘洪林

刘洪林. 基于近红外光谱技术(NIRS)对工夫红茶茶色素含量测定[J]. 食品工业科技, 2017, (01): 308-311. DOI: 10.13386/j.issn1002-0306.2017.01.054
引用本文: 刘洪林. 基于近红外光谱技术(NIRS)对工夫红茶茶色素含量测定[J]. 食品工业科技, 2017, (01): 308-311. DOI: 10.13386/j.issn1002-0306.2017.01.054
LIU Hong-lin. Determination of tea pigments contents of Congou black tea by near infrared spectroscopy[J]. Science and Technology of Food Industry, 2017, (01): 308-311. DOI: 10.13386/j.issn1002-0306.2017.01.054
Citation: LIU Hong-lin. Determination of tea pigments contents of Congou black tea by near infrared spectroscopy[J]. Science and Technology of Food Industry, 2017, (01): 308-311. DOI: 10.13386/j.issn1002-0306.2017.01.054

基于近红外光谱技术(NIRS)对工夫红茶茶色素含量测定

基金项目: 

重庆市教委科学技术研究项目(KJ1601413);

详细信息
    作者简介:

    刘洪林(1991-),男,硕士,助教,研究方向:茶学,E-mail:475844900@qq.com。;

  • 中图分类号: TS272.52

Determination of tea pigments contents of Congou black tea by near infrared spectroscopy

  • 摘要: 提出一种利用近红外光谱技术无损快速检测工夫红茶茶色素茶黄素(TFs)、茶红素(TRs)、茶褐素(TB)含量的新方法。实验样品共计240个,手动选择180个样品作为校正级,剩余60个样品作为预测集;利用OPUS7.0软件优化出各模型最佳波数段和最佳预处理方法,平滑点数17,维数1,结合茶TFs、TRs、TB含量建立预测模型,分析预测模型的预测性能。各预测模型预测精准度高,均可用于TFs、TRs、TB含量检测。其中,各模型校正相关系数(Rc)为95.11%~98.04%,校正均方根误差(RMSEC)为0.0796~0.2320;预测相关系数(Rp)为91.41%~99.73%,预测均方根误差(RMSEP)为0.0362~0.0762。各模型校正集和预测集均有较高的拟合度,模型预测性能TFs>TRs>TB。结论:近红外光谱图结合TFs、TRs、TB含量建立的各预测模型预测性能优,可用于工夫红茶TFs、TRs、TB含量快速无损检测。 
    Abstract: This paper gave a new method about detecting the theaflavin,thearubigins,tea brown contents of Congou black tea by near infrared spectroscopy.There were 240 test samples,180 samples of them were used to be a correction stage as the remaining 60 samples a prediction set.The best waves of the number of segments and best pretreatment method for model inguse of the model were optimized to establish the quantitative prediction model by OPUS 7.0 software.The Smooth points were 17 and dimension was 1.Combined with theaflavin,thearubigins,tea brown contents prediction model,the performance prediction model was analyzed and forecasted.The model predicted a high accuracy which can be used to predict thetheaflavin,thearubigins,tea brown contents of Congou black tea.The calibration correlation coefficient( Rc) was 91.41% ~ 99.73%,correcting root mean square error(RMSEC) was 0.0796~0.2320,predictive correlation coefficient( Rp) was 91.41% ~ 99.73%,and the RMSEP was0.0362 ~ 0.0762. Each model calibration set and prediction set had a higher degree of fit,the order of the effect of prediction performance model was TFs > TRs > TB.The combination of near-infrared spectra of each prediction model to predict the performance had an excellent organoleptic results which established for theaflavin,thearubigins,tea brown contents rapid nondestructive testing of Congou black tea.
  • [1] 宛晓春.茶叶生物化学(第三版)[M].中国农业出版社,2003:173-215,34,199-205.
    [2] 罗奕凡,禹双双,陈勤操,等.茶黄素的生理功效研究进展[J].茶叶通讯,2015,42(4):3-8.
    [3] 褚小立,陆婉珍.近五年我国近红外光谱分析技术研究与应用进展[J].光谱学与光谱分析,2014,34(10):2595-2605.
    [4] 郭志明.近红外光谱法测定茶叶中游离氨基酸的研究[J].光谱仪器与分析,2011,20(Z1):105-109.
    [5] 王小燕,王锡昌,刘源,等.近红外光谱技术在食品掺伪检测应用中的研究进展[J].食品科学,2011,32(1):265-269.
    [6] 刘辉军.基于近红外技术的茶叶成份快速分析仪的原理与设计[D].北京:中国计量科学研究院,2006.
    [7]

    Luypaert J M H,Zhang D L,Massart.Feasibility study for the use of near infrared spectroscopy in the qualitative and quantitative analysis of green tea[J].Camellia sinensis(L.)Analytica Chimica Acta,2003,478(2):303-312.

    [8] 陈全胜.无损检测新技术在茶叶品质检测中的应用[C]//食品安全监督与法制建设国际研讨会暨第二届中国食品研究生论坛论文集(上).杭州:食品安全监督局,2005:5-6.
    [9]

    Chen Q.Simultaneous analysis of main catechins contents in green tea(Camellia sinensis(L.)by Fourier transform near infrared reflectance(FT-NIR)spectroscopy[J].Food Chemistry,2009,113(4):1272-1277.

    [10] 李露青,张正竹.近红外光谱技术在茶叶质量安全领域的应用[J].食品安全质量检测学报,2015,6(5):1530-1535.
    [11] 张龙,潘家荣,朱诚.基于近红外光谱的不同发酵类型茶叶判别[J].食品科学,2012,33(20):149-152.
    [12]

    Lee B L,Ong C N.Comparative analysis of tea catechins and theaflavins by high-performance liquid chromatography and capillary electrophoresis[J].Journal of Chromatography A,2000,881(1-2):439-447.

    [13] 陆松侯,施兆鹏.茶叶审评与检验[M].北京:中国农业出版社,2001:4.
    [14] 周小芬,叶阳,周竹定,等.基于近红外光谱法的大佛龙井茶品质评价研究[J].光谱学与光谱分析,2012,32(11):2971-2975.
    [15] 廖步岩,张正竹,夏涛,等.近红外光谱分析技术在茶叶品质属性甄别中的应用[J].安徽农业大学学报,2009,36(02):287-291.
    [16] 李晓丽.基于机器视觉及光谱技术的茶叶品质无损检测方法研究[D].浙江:浙江大学,2009.
    [17]

    Lehrer M,Miller L,Natale J.Chapter 19-The OPUS System in Immunoassay Automation D.W.CHAN,D.W.CHANE ditors[M].Boston:Academic Press,1992:245-267.

    [18]

    Olivieriac,Escandar G M.Chapter 9-Partial Least-Squares with Residual Bilinearization[M].Boston:Elsevier,2014:157-195.

    [19] 严衍禄,赵龙莲,李军会.现代近红外光谱分析的信息处理技术[J].光谱学与光谱分析,2000,20(6):777-780.
    [20]

    Sinija V R,Mishra H N.FT-NIR spectroscopy for caffeine estimation in instant green tea powder and granules[J].LWTFood Science and Technology,2009,42(5):998-1002.

    [21] 尼珍,胡昌勤.近红外光谱分析中光谱预处理方法的作用及其发展[J].药物分析杂志,2008,28(5):824-828.
    [22] 柳艳云,胡昌勤.近红外分析中光谱波长选择方法进展与应用[J].药物分析杂志,2010,30(5):968-975.
    [23] 王梦东,王胜鹏.适用于3类茶的定性分类及主要内含成分定量分析的近红外预测模型的建立[J].华中农业大学学报,2015,34(1):123-127.
计量
  • 文章访问数:  260
  • HTML全文浏览量:  23
  • PDF下载量:  288
  • 被引次数: 0
出版历程
  • 收稿日期:  2016-03-03

目录

    /

    返回文章
    返回
    x 关闭 永久关闭