CARS-SPA baesd Visble/near Infraed spectroscopy on-line detection of apple soluble solids content
-
摘要: 采用CARS(competitive adaptive reweighted sampling)联合连续投影算法(SPA)方法筛选苹果可见/近红外光谱的特征变量,继而联合多种不同建模方法建立苹果可溶性固形物(SSC)预测模型,并对预测模型进行对比研究。研究结果显示,采用CARS-SPA联合筛选出的31个变量,通过采用PLS建立苹果SSC的可见/近红外光谱在线检测模型性能最稳定,其变量数仅为原始光谱的1.69%,预测集的相关系数和均方根误差分别为0.936和0.351%。研究表明采用CARS-SPA能有效提取苹果SSC的光谱特征变量,能有效简化模型并提高模型精度。Abstract: CARS was combined with SPA to select the important variables from the visible/near infrared spectrum of apple, then a variety of different modeling methods was used to develop calibration models for SSC of apple, finally, some comparative studies was done among those models. The analysis results showed that 31 variables which selected by CARS-SPA and PLS could build the most stable on-line detection model of apple soluble solids solids (SSC) , in this prediction model, the number of variables was only 1.69 percent of the orginal spectrum, the correlation coefficient of prediction and root mean square error of prediction were 0.936, 0.351% repectively. This study showed CARS-SPA could effectively extract important variables from spectrum of apple SSC, also it could simplify and improve the accuracy of prediction model effectively.
-
Keywords:
- visible/near-infrared spectroscopy /
- apple /
- CARS-SPA /
- PLS /
- SSC
-
[1] Camps C, Christen D.Non-destructive assessment of apricot fruit quality by portable visible-near infrared spectroscopy[J].LWT-Food Science and Technology, 2009, 42 (6) :1125-1131.
[2] Paz P, Sánchez M T, Pérez-Marín D, et al.Instantaneous quantitative and qualitative assessment of pear quality using near infrared spectroscopy[J].Computers and Electronics in Agriculture, 2009, 69 (1) :24-32.
[3] Jha S N, Jaiswal P, Narsaiah K, et al.Non-destructive prediction of sweetness of intact mango using near infrared spectroscopy[J].Scientia Horticulturae, 2012, 138:171-175.
[4] 王加华, 戚淑叶, 汤智辉, 等.便携式近红外光谱仪的苹果糖度模型温度修正[J].光谱学与光谱分析, 2012, 32 (5) :1431-1434. [5] Moghimi A, Aghkhani M H, Sazgarnia A, et al.Vis/NIR spectroscopy and chemometrics for the prediction of soluble solids content and acidity (p H) of kiwifruit[J].Biosystems Engineering, 2010, 106 (3) :295-302.
[6] 韩东海, 常冬, 宋曙辉, 等.小型西瓜品质近红外无损检测的光谱信息采集[J].农业机械学报, 2013, 44 (7) :174-178. [7] 代芬, 蔡博昆, 洪添胜, 等.漫透射法无损检测荔枝可溶性固形物[J].农业工程学报, 2012, 28 (15) :287-292. [8] 朱伟兴, 江辉, 陈全胜, 等.梨可溶性固形物含量NIR与变量筛选无损检测[J].农业机械学报, 2010, 41 (10) :129-133. [9] 欧阳爱国, 谢小强, 周延睿, 等.苹果可溶性固形物近红外光谱检测的偏最小二乘回归变量筛选研究[J].光谱学与光谱分析, 2012, 32 (10) :2680-2684. [10] Jha S N, Garg R.Non-destructive prediction of quality of intact apple using near infrared spectroscopy[J].Journal of Food Science and Technology, 2010, 47 (2) :207-213.
[11] 孙炳新, 匡立学, 徐方旭, 等.苹果有效酸度的近红外无损检测研究[J].食品工业科技, 2013, 34 (15) :298-301. [12] 孙炳新, 匡立学, 徐方旭, 等.苹果脆度的近红外无损检测[J].食品与发酵工业, 2013, 39 (5) :185-189. [13] 袁雷明, 高海宁, 吕松, 等.可见/近红外光谱半透射法检测苹果中可溶性固形物含量[J].食品安全质量检测学报, 2012, 3 (5) :448-452. [14] 高珏, 王从庆.基于KPCA苹果近红外光谱的特征提取研究[J].食品科技, 2012 (3) :275-278. [15] 周林峰, 吕进, 刘辉军, 等.温度对果糖含量近红外光谱检测模型传递的影响[J].中国计量学院学报, 2012, 23 (3) :217-221. [16] 孙旭东, 郝勇, 刘燕德.苹果可溶性固形物近红外光谱在线检测影响因素研究[J].中国农机化学报, 2013 (1) :86-90. [17] 王加华, 戚淑叶, 汤智辉, 等.便携式近红外光谱仪的苹果糖度模型温度修正[J].光谱学与光谱分析, 2012, 32 (5) :1431-1434.
计量
- 文章访问数: 213
- HTML全文浏览量: 21
- PDF下载量: 172