• EI
  • Scopus
  • 中国科技期刊卓越行动计划项目资助期刊
  • 北大核心期刊
  • DOAJ
  • EBSCO
  • 中国核心学术期刊RCCSE A+
  • 中国精品科技期刊
  • JST China
  • FSTA
  • 中国农林核心期刊
  • 中国科技核心期刊CSTPCD
  • CA
  • WJCI
  • 食品科学与工程领域高质量科技期刊分级目录第一方阵T1
中国精品科技期刊2020
许文丽, 药林桃, 孙通, 胡田, 胡涛, 刘木华. 基于CARS-SPA的苹果可溶性固形物可见/近红外光谱在线检测[J]. 食品工业科技, 2014, (22): 61-64. DOI: 10.13386/j.issn1002-0306.2014.22.004
引用本文: 许文丽, 药林桃, 孙通, 胡田, 胡涛, 刘木华. 基于CARS-SPA的苹果可溶性固形物可见/近红外光谱在线检测[J]. 食品工业科技, 2014, (22): 61-64. DOI: 10.13386/j.issn1002-0306.2014.22.004
XU Wen-li, YAO Lin-tao, SUN Tong, HU Tian, HU Tao, LIU Mu-hua. CARS-SPA baesd Visble/near Infraed spectroscopy on-line detection of apple soluble solids content[J]. Science and Technology of Food Industry, 2014, (22): 61-64. DOI: 10.13386/j.issn1002-0306.2014.22.004
Citation: XU Wen-li, YAO Lin-tao, SUN Tong, HU Tian, HU Tao, LIU Mu-hua. CARS-SPA baesd Visble/near Infraed spectroscopy on-line detection of apple soluble solids content[J]. Science and Technology of Food Industry, 2014, (22): 61-64. DOI: 10.13386/j.issn1002-0306.2014.22.004

基于CARS-SPA的苹果可溶性固形物可见/近红外光谱在线检测

CARS-SPA baesd Visble/near Infraed spectroscopy on-line detection of apple soluble solids content

  • 摘要: 采用CARS(competitive adaptive reweighted sampling)联合连续投影算法(SPA)方法筛选苹果可见/近红外光谱的特征变量,继而联合多种不同建模方法建立苹果可溶性固形物(SSC)预测模型,并对预测模型进行对比研究。研究结果显示,采用CARS-SPA联合筛选出的31个变量,通过采用PLS建立苹果SSC的可见/近红外光谱在线检测模型性能最稳定,其变量数仅为原始光谱的1.69%,预测集的相关系数和均方根误差分别为0.936和0.351%。研究表明采用CARS-SPA能有效提取苹果SSC的光谱特征变量,能有效简化模型并提高模型精度。 

     

    Abstract: CARS was combined with SPA to select the important variables from the visible/near infrared spectrum of apple, then a variety of different modeling methods was used to develop calibration models for SSC of apple, finally, some comparative studies was done among those models. The analysis results showed that 31 variables which selected by CARS-SPA and PLS could build the most stable on-line detection model of apple soluble solids solids (SSC) , in this prediction model, the number of variables was only 1.69 percent of the orginal spectrum, the correlation coefficient of prediction and root mean square error of prediction were 0.936, 0.351% repectively. This study showed CARS-SPA could effectively extract important variables from spectrum of apple SSC, also it could simplify and improve the accuracy of prediction model effectively.

     

/

返回文章
返回