南果梨果实硬度近红外无损检测模型的建立
详细信息Establishment of firmness value nondestructive detecting models on ‘Nanguo’ pears by NIRS technology
-
摘要: 实验比较了不同分区波段建模模型的性能,结果表明全波段643.26~954.15nm光谱建立的硬度模型优于其它两个分段光谱建立的模型;利用剔除异常样品和主成分分布图法对模型进行优化,建立了鞍山、海城两产区混合的硬度模型,相关系数(R)为0.970,均方根误差(RMSEC)为0.124;预测残差分布结果表明所建立的南果梨硬度模型性能较稳定,满足实际应用要求,模型适用于预测范围在2~15kg/cm2的南果梨硬度。Abstract: By comparing the models that were established by different spectra band, the results showed that the firmness model establishing under the 643.26~954.15nm spectrum was superior to the other two models. Methods of eliminating unusual samples and main components analyze were used to optimize the models. The firmness model results:correlation coefficient of calibration and RMSEC were 0.970 and 0.124. The prediction residual distribution results indicated that the models were stable and fulfilled the requirements of practical application, the optimal predictive scope of firmness model was 2~15kg/cm2.
-
[1] 傅霞萍, 应义斌, 刘燕德, 等.水果坚实度的近红外光谱检测分析实验研究[J].光谱学与光谱分析, 2006, 26 (6) :1038-1041. [2] 陆婉珍, 袁洪福, 徐广通.现代近红外光谱分析技术[M].北京:中国石化出版社, 2000. [3] Kleynen O, Leemans V, Destain M F.Development of a multi-spectral vision system for the detection of defects on apples[J].Journal of Food Engineering, 2005, 69:41-49.
[4] Schmilovitch Ze’ev, Mizrach Amos, Aharon Hoffman, et al.Determination of mango physiological indices by NIR spectrometry[J].Postharvest Biology and Teehoology, 2000, 19:245-252.
[5] Renfu Lu.Predicting finnness and sugar content of sweet cherries using Near-Infrared diffuse reflectance spectroscopy[J].Transactions of the ASAE, 2001, 44 (5) :1265-1271.
[6] 李桂峰, 赵国建, 刘兴华, 等.苹果硬度的傅里叶变换近红外光谱无损检测[J].农业机械学报, 2009, 40 (1) :120-123. [7] 苏东林, 李高阳, 何建新, 等.近红外光谱分析技术在我国大宗水果品质无损检测中的应用研究进展[J].食品工业科技, 2012, 33 (6) :460-464. [8] 张鹏, 李江阔, 孟宪军, 等.可见/近红外漫反射光谱无损检测磨盘柿果实硬度的研究[J].食品工业科技, 2011, 32 (7) :423-425. [9] 范国强, 闸建文.运用近红外漫反射技术检测苹果内部品质[J].农业装备与车辆工程, 2006 (11) :33-35. [10] 刘木华, 林怀蔚, 程仁发.油桃硬度品质的光谱图像检测技术研究[J].安徽农学通报, 2007, 13 (4) :42-43.
计量
- 文章访问数: 85
- HTML全文浏览量: 7
- PDF下载量: 218