基于连续投影算法的油菜蜜近红外光谱真伪鉴别的研究
-
摘要: 采用连续投影算法(successive project algorithm,SPA)对177个不同产地油菜蜜样本的近红外光谱做波长选择,然后以33个特征变量作线性识别分析(LDA)。同时,也采用了主成分分析(PCA)对变量进行压缩。比较了二次识别分析(QDA)和簇类独立软模式分类法(SIMCA)的鉴别结果。SPA-LDA模型预测集的鉴别准确率为97.7%,而PCA-LDA、全谱的SIMCA和SPA-QDA预测集的正确率分别为93.2%、95.4%和90.9%;上述四种方法ROC曲线下的面积分别为0.964、0.912、0.948和0.933。SPA-LDA性能比其他三种方法要好。该方法准确、可靠,为蜂蜜真实性的现场快速检测提供了一种新方法。