Citation: | XU Qiongyao, WANG Juan, LIAO Ning, et al. Strategies and New Technologies for Improving the Tolerance of Lactic Acid Bacteria to Processing and Gastrointestinal Environments[J]. Science and Technology of Food Industry, 2023, 44(20): 1−10. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023030350. |
[1] |
王立芳. 乳酸菌的益生特性及应用研究进展[J]. 农产品加工,2019(11):86−88. [WANG Lifang. Research progress on probiotic properties and application of lactic acid bacteria[J]. Agricultural Products Processing,2019(11):86−88. doi: 10.16693/j.cnki.1671-9646(X).2019.06.026
WANG Lifang. Research progress on probiotic properties and application of lactic acid bacteria[J]. Agricultural Products Processing, 2019, (11): 86-88. doi: 10.16693/j.cnki.1671-9646(X).2019.06.026
|
[2] |
杜兰威, 单蕊, 赵蕾, 等. 乳酸菌的功能及其在食品工业中的应用[J]. 食品研究与开发,2019,40(13):221−224. [DU Lanwei, SHAN Rui, ZHAO Lei, et al. Function of lactic acid bacteria and their application in food industry[J]. Food Research and Development,2019,40(13):221−224.
DU Lanwei, SHAN Rui, ZHAO Lei, et al. Function of lactic acid bacteria and their application in food industry[J]. Food Research and Development, 2019, 40(13): 221-224.
|
[3] |
SHEHATA A A, YALçıN S, LATORRE J D, et al. Probiotics, prebiotics, and phytogenic substances for optimizing gut health in poultry[J]. Microorganisms,2022,10(2):395.
|
[4] |
MERENSTEIN D, POT B, LEYER G, et al. Emerging issues in probiotic safety: 2023 perspectives[J]. Gut Microbes,2023,15(1):2185034. doi: 10.1080/19490976.2023.2185034
|
[5] |
BODKE H, JOGDAND S. Role of probiotics in human health[J]. Cureus,2022,14(11):e31313.
|
[6] |
杭锋, 陈卫. 益生乳酸菌的生理特性研究及其在发酵果蔬饮料中的应用[J]. 食品科学技术学报,2017,35(4):33−41. [HANG Feng, CHEN Wei. Study on physiological characteristics of probiotic lactic acid bacteria and their application in fermented fruit and vegetable beverages[J]. Journal of Food Science and Technology,2017,35(4):33−41. doi: 10.3969/j.issn.2095-6002.2017.04.005
HANG Feng, CHEN Wei. Study on physiological characteristics of probiotic lactic acid bacteria and their application in fermented fruit and vegetable beverages[J]. Journal of Food Science and Technology, 2017, 35(4): 33-41. doi: 10.3969/j.issn.2095-6002.2017.04.005
|
[7] |
ABESINGHE A M N L, PRIYASHANTHA H, PRASANNA P H P, et al. Inclusion of probiotics into fermented buffalo (Bubalus bubalis) milk: An overview of challenges and opportunities[J]. Fermentation,2020,6(4):121. doi: 10.3390/fermentation6040121
|
[8] |
PEIGHAMBARDOUST S H, TAFTI A G, HESARI J. Application of spray drying for preservation of lactic acid starter cultures: A review[J]. Trends in Food Science & Technology,2011,22(5):215−224.
|
[9] |
HADINIA N, EDALATIAN DOVOM M R, YAVARMANESH M. The effect of fermentation conditions (temperature, salt concentration, and pH) with Lactobacillus strains for producing short chain fatty acids[J]. LWT-Food Science and Technology,2022,165:113709. doi: 10.1016/j.lwt.2022.113709
|
[10] |
CHEN B, WANG X, LI P, et al. Exploring the protective effects of freeze-dried Lactobacillus rhamnosus under optimized cryoprotectants formulation[J]. LWT-Food Science and Technology,2023,173:114295. doi: 10.1016/j.lwt.2022.114295
|
[11] |
JAWAN R, ABBASILIASI S, TAN J S, et al. Influence of type and concentration of lyoprotectants, storage temperature and storage duration on cell viability and antibacterial activity of freeze-dried lactic acid bacterium, Lactococcus lactis Gh1[J]. Drying Technology,2022,40(9):1774−1790. doi: 10.1080/07373937.2021.1874968
|
[12] |
GWAK H J, LEE J H, KIM T W, et al. Protective effect of soy powder and microencapsulation on freeze-dried Lactobacillus brevis WK12 and Lactococcus lactis WK11 during storage[J]. Food Science and Biotechnology,2015,24(6):2155−2160. doi: 10.1007/s10068-015-0287-5
|
[13] |
WANG G Q, PU J, YU X Q, et al. Influence of freezing temperature before freeze-drying on the viability of various Lactobacillus plantarum strains[J]. Journal of Dairy Science,2020,103(4):3066−3075. doi: 10.3168/jds.2019-17685
|
[14] |
PERDANA J, FOX M B, SIWEI C, et al. Interactions between formulation and spray drying conditions related to survival of Lactobacillus plantarum WCFS1[J]. Food Research International,2014,56:9−17. doi: 10.1016/j.foodres.2013.12.007
|
[15] |
KHEM S, BANSAL V, SMALL D M, et al. Comparative influence of pH and heat on whey protein isolate in protecting Lactobacillus plantarum A17 during spray drying[J]. Food Hydrocolloids,2016,54:162−169. doi: 10.1016/j.foodhyd.2015.09.029
|
[16] |
SUNNY-ROBERTS E O, KNORR D. The protective effect of monosodium glutamate on survival of Lactobacillus rhamnosus GG and Lactobacillus rhamnosus E-97800 (E800) strains during spray-drying and storage in trehalose-containing powders[J]. International Dairy Journal,2008,19(4):209−214.
|
[17] |
PINTO S S, VERRUCK S, VIEIRA C R W, et al. Influence of microencapsulation with sweet whey and prebiotics on the survival of Bifidobacterium-BB-12 under simulated gastrointestinal conditions and heat treatments[J]. LWT-Food Science and Technology,2015,64(2):1004−1009. doi: 10.1016/j.lwt.2015.07.020
|
[18] |
SOUZA M, MESQUITA A, VERíSSIMO C, et al. Microencapsulation by spray drying of a functional product with mixed juice of acerola and ciriguela fruits containing three probiotic lactobacilli[J]. Drying Technology,2020,40(6):1185−1195.
|
[19] |
WAKAI T, KANO C, KARSENS H, et al. Functional role of surface layer proteins of Lactobacillus acidophilus L-92 in stress tolerance and binding to host cell proteins[J]. Bioscience of Microbiota, Food and Health,2021,40(1):33−42. doi: 10.12938/bmfh.2020-005
|
[20] |
CHEN M J, TANG H Y, CHIANG M L. Effects of heat, cold, acid and bile salt adaptations on the stress tolerance and protein expression of kefir-isolated probiotic Lactobacillus kefiranofaciens M1[J]. Food Microbiology,2017,66:20−27. doi: 10.1016/j.fm.2017.03.020
|
[21] |
ZHANG C, HAN Y, GUI Y, et al. Influence of nitrogen sources on the tolerance of Lacticaseibacillus rhamnosus to heat stress and oxidative stress[J]. Journal of Industrial Microbiology and Biotechnology,2022,49(5):kuac020. doi: 10.1093/jimb/kuac020
|
[22] |
VALERIANO V D, PARUNGAO-BALOLONG M M, KANG D K. In vitro evaluation of the mucin-adhesion ability and probiotic potential of Lactobacillus mucosae LM1[J]. Journal of Applied Microbiology,2014,117(2):485−497. doi: 10.1111/jam.12539
|
[23] |
LIU B, FU N, WOO M W, et al. Heat stability of Lactobacillus rhamnosus GG and its cellular membrane during droplet drying and heat treatment[J]. Food Research International,2018,112:56−65. doi: 10.1016/j.foodres.2018.06.006
|
[24] |
SERRAZANETTI D I, GUERZONI M E, CORSETTI A, et al. Metabolic impact and potential exploitation of the stress reactions in lactobacilli[J]. Food Microbiology,2009,26(7):700−711. doi: 10.1016/j.fm.2009.07.007
|
[25] |
GAO X, KONG J, ZHU H, et al. Lactobacillus, Bifidobacterium and Lactococcus response to environmental stress: Mechanisms and application of cross-protection to improve resistance against freeze-drying[J]. Journal of Applied Microbiology,2022,132(2):802−821. doi: 10.1111/jam.15251
|
[26] |
PAÉZ R, LAVARI L, VINDEROLA G, et al. Effect of heat treatment and spray drying on lactobacilli viability and resistance to simulated gastrointestinal digestion[J]. Food Research International,2012,48(2):748−754. doi: 10.1016/j.foodres.2012.06.018
|
[27] |
SHIN Y, KANG C H, KIM W, et al. Heat adaptation improved cell viability of probiotic Enterococcus faecium HL7 upon various environmental stresses[J]. Probiotics Antimicrob Proteins,2019,11(2):618−626. doi: 10.1007/s12602-018-9400-4
|
[28] |
SONIA K, F H S, SHALAKA S, et al. Adaptation of Lactobacillus acidophilus to thermal stress yields a thermotolerant variant which also exhibits improved survival at pH 2[J]. Probiotics and Antimicrobial Proteins,2017,10(4):717−727.
|
[29] |
ZHANG C, LU J, YANG D, et al. Stress influenced the aerotolerance of Lactobacillus rhamnosus hsryfm 1301[J]. Biotechnology Letters,2018,40(4):729−735. doi: 10.1007/s10529-018-2523-6
|
[30] |
AJALLOUEIAN F, GUERRA P R, BAHL M I, et al. Multi-layer PLGA-pullulan-PLGA electrospun nanofibers for probiotic delivery[J]. Food Hydrocolloids,2022,123:107112. doi: 10.1016/j.foodhyd.2021.107112
|
[31] |
SHAHRIAR S M S, MONDAL J, HASAN M N, et al. Electrospinning nanofibers for therapeutics delivery[J]. Nanomaterials,2019,9(4):532.
|
[32] |
CHEW S Y, WEN Y, DZENIS Y, et al. The role of electrospinning in the emerging field of nanomedicine[J]. Current Pharmaceutical Design,2006,12(36):4751−4770. doi: 10.2174/138161206779026326
|
[33] |
HUANG Z M, ZHANG Y Z, KOTAKI M, et al. A review on polymer nanofibers by electrospinning and their applications in nanocomposites[J]. Composites Science and Technology,2003,63(15):2223−2253. doi: 10.1016/S0266-3538(03)00178-7
|
[34] |
AMPARO L R, ESTER S, YOLANDA S, et al. Encapsulation of living bifidobacteria in ultrathin PVOH electrospun fibers[J]. Biomacromolecules,2009,10(10):2823−2829. doi: 10.1021/bm900660b
|
[35] |
FENG K, ZHAI M Y, ZHANG Y, et al. Improved viability and thermal stability of the probiotics encapsulated in a novel electrospun fiber mat[J]. Journal of Agricultural and Food Chemistry,2018,66(41):10890−10897. doi: 10.1021/acs.jafc.8b02644
|
[36] |
FUNG W Y, YUEN K H, LIONG M T. Agrowaste-based nanofibers as a probiotic encapsulant: Fabrication and characterization[J]. Journal of Agricultural and Food Chemistry,2011,59(15):8140−8147. doi: 10.1021/jf2009342
|
[37] |
SCHÖPPING M, ZEIDAN AHMAD A, FRANZéN CARL J. Stress response in Bifidobacteria[J]. Microbiology and Molecular Biology Reviews,2022,86(4):e00170−21.
|
[38] |
杨淼, 宋馨, 刘欣欣, 等. 提高双歧杆菌耐氧性研究进展[J]. 食品与发酵科技,2021,57(2):129−133. [YANG Miao, SONG Xin, LIU Xinxin, et al. Research progress on improving oxygen tolerance of Bifidobacterium[J]. Food and Fermentation Science and Technology,2021,57(2):129−133.
YANG Miao, SONG Xin, LIU Xinxin, et al. Research progress on improving oxygen tolerance of Bifidobacterium[J]. Food and Fermentation Science and Technology, 2021, 57(2): 129-133
|
[39] |
OLUWATOSIN S O, TAI S L, FAGAN-ENDRES M A. Sucrose, maltodextrin and inulin efficacy as cryoprotectant, preservative and prebiotic-towards a freeze dried Lactobacillus plantarum topical probiotic[J]. Biotechnology Reports,2022,33:e00696. doi: 10.1016/j.btre.2021.e00696
|
[40] |
CHEN H Y, LI X Y, LIU B J, et al. Microencapsulation of Lactobacillus bulgaricus and survival assays under simulated gastrointestinal conditions[J]. Journal of Functional Foods,2017,29:248−255. doi: 10.1016/j.jff.2016.12.015
|
[41] |
GHANDI A, POWELL I B, HOWES T, et al. Effect of shear rate and oxygen stresses on the survival of Lactococcus lactis during the atomization and drying stages of spray drying: A laboratory and pilot scale study[J]. Journal of Food Engineering,2012,113(2):194−200. doi: 10.1016/j.jfoodeng.2012.06.005
|
[42] |
SOHAIL A, TURNER M S, COOMBES A, et al. Survivability of probiotics encapsulated in alginate gel microbeads using a novel impinging aerosols method[J]. International Journal of Food Microbiology,2011,145(1):162−168. doi: 10.1016/j.ijfoodmicro.2010.12.007
|
[43] |
MISRA S, PANDEY P, DALBHAGAT C G, et al. Emerging technologies and coating materials for improved probiotication in food products: A review[J]. Food and Bioprocess Technology,2022,15(5):998−1039. doi: 10.1007/s11947-021-02753-5
|
[44] |
WANG H C, CHENG H Y, WANG S S, et al. Efficient treatment of azo dye containing wastewater in a hybrid acidogenic bioreactor stimulated by biocatalyzed electrolysis[J]. Journal of Environmental Sciences,2016,39:198−207. doi: 10.1016/j.jes.2015.10.014
|
[45] |
ALE E C, ROJAS M F, REINHEIMER J A, et al. Lactobacillus fermentum: Could EPS production ability be responsible for functional properties?[J]. Food Microbiology,2020,90:103465. doi: 10.1016/j.fm.2020.103465
|
[46] |
FRAKOLAKI G, GIANNOU V, KEKOS D, et al. A review of the microencapsulation techniques for the incorporation of probiotic bacteria in functional foods[J]. Critical Reviews in Food Science and Nutrition,2021,61(9):1515−1536. doi: 10.1080/10408398.2020.1761773
|
[47] |
HEIDEBACH T, FöRST P, KULOZIK U. Microencapsulation of probiotic cells for food applications[J]. Critical Reviews in Food Science and Nutrition,2012,52(4):291−311. doi: 10.1080/10408398.2010.499801
|
[48] |
AREPALLY D, REDDY R S, GOSWAMI T K, et al. A review on probiotic microencapsulation and recent advances of their application in bakery products[J]. Food and Bioprocess Technology,2022,15(8):1677−1699. doi: 10.1007/s11947-022-02796-2
|
[49] |
ALEMZADEH I, HAJIABBAS M, PAKZAD H, et al. Encapsulation of food components and bioactive ingredients and targeted release[J]. International Journal of Engineering, Transactions A: Basics,2020,33(1):1−11.
|
[50] |
SAIFULLAH M, SHISHIR M R I, FERDOWSI R, et al. Micro and nano encapsulation, retention and controlled release of flavor and aroma compounds: A critical review[J]. Trends in Food Science and Technology,2019,86:230−251. doi: 10.1016/j.jpgs.2019.02.030
|
[51] |
WANG L, SONG M, ZHAO Z, et al. Lactobacillus acidophilus loaded pickering double emulsion with enhanced viability and colon-adhesion efficiency[J]. LWT-Food Science and Technology,2020,121:108928. doi: 10.1016/j.lwt.2019.108928
|
[52] |
ZHANG Y, LIN J, ZHONG Q. S/O/W emulsions prepared with sugar beet pectin to enhance the viability of probiotic Lactobacillus salivarius NRRL B-30514[J]. Food Hydrocolloids,2016,52:804−810. doi: 10.1016/j.foodhyd.2015.08.020
|
[53] |
ZHANG R, ZHOU L, LI J, et al. Microencapsulation of anthocyanins extracted from grape skin by emulsification/internal gelation followed by spray/freeze-drying techniques: Characterization, stability and bioaccessibility[J]. LWT-Food Science and Technology,2020,123:109097. doi: 10.1016/j.lwt.2020.109097
|
[54] |
GOIBIER L, PILLEMENT C, MONTEIL J, et al. Preparation of multiple water-in-oil-in-water emulsions without any added oil-soluble surfactant[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2020,590:124492. doi: 10.1016/j.colsurfa.2020.124492
|
[55] |
SHU G, HE Y, CHEN L, et al. Microencapsulation of Lactobacillus acidophilus by xanthan-chitosan and its stability in yoghurt[J]. Polymers,2017,9(12):733. doi: 10.3390/polym9120733
|
[56] |
HUERTA-VERA K, FLORES-ANDRADE E, PÉREZ-SATO J A, et al. Enrichment of banana with Lactobacillus rhamnosus using double emulsion and osmotic dehydration[J]. Food and Bioprocess Technology,2017,10(6):1053−1062. doi: 10.1007/s11947-017-1879-2
|
[57] |
HOLKEM A T, RADDATZ G C, NUNES G L, et al. Development and characterization of alginate microcapsules containing Bifidobacterium BB-12 produced by emulsification/internal gelation followed by freeze drying[J]. LWT-Food Science and Technology,2016,71:302−308. doi: 10.1016/j.lwt.2016.04.012
|
[58] |
RADDATZ G C, DE SOUZA DA FONSECA B, POLETTO G, et al. Influence of the prebiotics hi-maize, inulin and rice bran on the viability of pectin microparticles containing Lactobacillus acidophilus LA-5 obtained by internal gelation/emulsification[J]. Powder Technology,2020,362:409−415. doi: 10.1016/j.powtec.2019.11.114
|
[59] |
DEHKORDI S S, ALEMZADEH I, VAZIRI A S, et al. Optimization of alginate-whey protein isolate microcapsules for survivability and release behavior of probiotic bacteria[J]. Applied Biochemistry and Biotechnology,2020,190(1):182−196. doi: 10.1007/s12010-019-03071-5
|
[60] |
BOCK N, DARGAVILLE T R, WOODRUFF M A. Electrospraying of polymers with therapeutic molecules: State of the art[J]. Progress in Polymer Science,2012,37(11):1510−1551. doi: 10.1016/j.progpolymsci.2012.03.002
|
[61] |
KRÖMMELBEIN C, XIE X, SEIFERT J, et al. Electron beam treated injectable agarose/alginate beads prepared by electrospraying[J]. Carbohydrate Polymers,2022,298:120024. doi: 10.1016/j.carbpol.2022.120024
|
[62] |
COGHETTO C C, BRINQUES G B, SIQUEIRA N M, et al. Electrospraying microencapsulation of Lactobacillus plantarum enhances cell viability under refrigeration storage and simulated gastric and intestinal fluids[J]. Journal of Functional Foods,2016,24:316−326. doi: 10.1016/j.jff.2016.03.036
|
[63] |
TAPIERO H, TEW K D, BA G N, et al. Polyphenols: do they play a role in the prevention of human pathologies?[J]. Biomedicine & Pharmacotherapy,2002,56(4):200−207.
|
[64] |
PRETI R, TAROLA A M. Study of polyphenols, antioxidant capacity and minerals for the valorisation of ancient apple cultivars from Northeast Italy[J]. European Food Research and Technology,2021,247(1):273−283. doi: 10.1007/s00217-020-03624-7
|
[65] |
王梦丽. 植物多酚结构、生物学活性研究及其保鲜应用[D]. 厦门: 厦门大学, 2019
WANG Mengli. Study on the structure, biological activity of plant polyphenols and their application of freshness[D]. Xiamen: Xiamen University, 2019.
|
[66] |
ANTONIO J E, OVE D L, BAHRAM D, et al. In vitro antioxidant activities of edible artichoke (Cynara scolymus L.) and effect on biomarkers of antioxidants in rats[J]. Journal of Agricultural and Food Chemistry,2003,51(18):5540−5545. doi: 10.1021/jf030047e
|
[67] |
GUO J, TARDY B L, CHRISTOFFERSON A J, et al. Modular assembly of superstructures from polyphenol-functionalized building blocks[J]. Nature Nanotechnology,2016,11(12):1105−1111. doi: 10.1038/nnano.2016.172
|
[68] |
LUO H, WU F, WANG X, et al. Encoding bacterial colonization and therapeutic modality by wrapping with an adhesive drug-loadable nanocoating[J]. Materials Today,2023,62:98−110. doi: 10.1016/j.mattod.2023.01.001
|
[69] |
PAN J, GONG G, WANG Q, et al. A single-cell nanocoating of probiotics for enhanced amelioration of antibiotic-associated diarrhea[J]. Nature Communications,2022,13(1):2117. doi: 10.1038/s41467-022-29672-z
|
[70] |
PENA F L, SOUZA M C, VALLE M C P R, et al. Probiotic fermented milk with high content of polyphenols: Study of viability and bioaccessibility after simulated digestion[J]. International Journal of Dairy Technology,2021,74(1):170−180. doi: 10.1111/1471-0307.12735
|