Citation: | LI Dan, WANG Xiumei, LIANG Jie, et al. Process Optimization and Structure Characterization of Jackfruit Seed Dietary Fiber Modified by High Temperature Cooking Combined with Ultrasonic Enzymatic Method[J]. Science and Technology of Food Industry, 2023, 44(23): 203−212. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023020210. |
[1] |
CHAI T T, XIAO J, DASS S M, et al. Identification of antioxidant peptides derived from tropical jackfruit seed and investigation of the stability profiles[J]. Food Chemistry,2020,340:127876.
|
[2] |
KUSHWAHA R, FATIMA N T, SINGH M, et al. Effect of cultivar and maturity on functional properties low molecular weight carbohydrate and antioxidant activity of jackfruit seed flour[J]. Journal of Food Processing and Preservation,2020,45(2):15146.
|
[3] |
HUANG S, HE Y, ZOU Y. Modification of insoluble dietary fibres in soya bean okara and their physicochemical properties[J]. International Journal of Food Science and Technology, 2016, 50(12):2606-2613.
|
[4] |
NOOR F. Physicochemical properties of flour and extraction of starch from jackfruit seed[J]. Internationl Journal of Nutrition and Food Sciences,2014,3(4):347−354. doi: 10.11648/j.ijnfs.20140304.27
|
[5] |
师江, 曹海燕, 郭芬. 菠萝蜜籽营养成分分析与安全性评价[J]. 食品研究与开发,2018,39(14):193−196. [SHI J, CAO H Y, GUO F. Nutrition aanalysis and ssecurity aassessment of jackfruit seeds[J]. Food Research and Development,2018,39(14):193−196. doi: 10.3969/j.issn.1005-6521.2018.14.035
|
[6] |
CHEN H, XIONG M, BAI T, et al. Comparative study on the structure, physicochemical, and functional properties of dietary fiber extracts from quinoa and wheat[J]. LWT-Food Science and Technology,2021,149(9):111816.
|
[7] |
HUANG H, CHEN J, CHEN Y, et al. Modification of tea residue dietary fiber by high-temperature cooking assisted enzymatic method:Structural, physicochemical and functional properties[J]. LWT-Food Science and Technology,2021,145(1):111314.
|
[8] |
陈思妤, 焦叶, 崔波, 等. 膳食纤维理化特性及其改性方法研究进展[J]. 食品与机械,2022,38(5):234−240. [CHEN S Y, JIAO Y, CUI B, et al. Research progression physicochemical properties and modification methods of dietary fiber[J]. Food and Machinery,2022,38(5):234−240.
|
[9] |
WANG K L, LI M, WANG Y X, et al. Effects of extraction methods on the structural characteristics and functional properties of dietary fiber extracted from kiwifruit ( Actinidia deliciosa)[J]. Food Hydrocolloids,2021,110:106162. doi: 10.1016/j.foodhyd.2020.106162
|
[10] |
丁彩云, 糟帆, 马玉婷, 等. 高温-复合酶法改性小米糠膳食纤维工艺优化及结构与功能分析[J]. 中国粮油学报,2022,37(12):67−75. [DING C Y, ZAO F, MA Y T, et al. Optimizaing the preparation process of dietary fiber from millet bran modified by high temperature-composite enzyme and analysis of its structure and functional properties[J]. Journal of the Chinese Cereals and Oils Association,2022,37(12):67−75.
|
[11] |
汪楠, 黄山, 张月, 等. 高温蒸煮协同纤维素酶改性竹笋膳食纤维[J]. 食品与发酵工业,2020,46(4):13−18. [WANG N, HUANG S, ZHANG Y, et al. Modification of bamboo shoot dietary fiber by high temperature cooking combined with cellulase[J]. Food and Fermentation Industries,2020,46(4):13−18.
|
[12] |
LI Y N, YU Y S, WU J J, et al. Comparison the structural, physicochemical, and prebiotic properties of litchi pomace dietary fibers before and after modification[J]. Foods,2022,11(3):248−259. doi: 10.3390/foods11030248
|
[13] |
OLADUNJOYE A O, EZIAMA S C. Effect of microwave-assistedalkaline treatment on physicochemical, functional and structural properties of hog plum ( Spondias mombin L.) bagasse[J]. LWT,2020,132:109821. doi: 10.1016/j.lwt.2020.109821
|
[14] |
YANG C R, SI J Y, CHEN Y, et al. Physicochemical structure and functional properties of soluble dietary fibers obtained by different modification methods from Mesona chinensis Benth. residue[J]. Food Research International,2022,157:111489. doi: 10.1016/j.foodres.2022.111489
|
[15] |
朱珂. 超声改性对咖啡果皮可溶性膳食纤维组成、结构及性质的影响[D]. 宁夏:宁夏大学, 2022:9−10. [ZHU K. Effect of ultrasound modification on the structure and properties of soluble dietary fiber in coffee peel[D]. Ningxia:Ningxia University, 2022:9−10.
ZHU K. Effect of ultrasound modification on the structure and properties of soluble dietary fiber in coffee peel[D]. Ningxia: Ningxia University, 2022: 9−10.
|
[16] |
KAHWA P, KWANGY L, HYEONG L. Chemical composition and physicochemical properties of barley dietary fiber by chemical modification[J]. International Journal of Biological Macromolecules,2013,60(9):360−365.
|
[17] |
丁政宇, 张士凯, 何子杨, 等. 响应面优化黄精渣不溶性膳食纤维酶法提取工艺及其结构表征[J]. 食品工业科技,2021,42(20):157−163. [DING Z Y, ZHANG S K, HE Z Y, et al. Optimization of enzymatic extraction process of insoluble dietary fiber from Polygonatum sibiricum residue by response surface methodology and its characterization[J]. Science and Technology of Food Industry,2021,42(20):157−163.
|
[18] |
YANG X, DAI J, ZHONG Y, et al. Characterization of insoluble dietary fiber from three food sources and their potential hypoglycemic and hypolipidemic effects[J]. Food and Function,2021,12:6576−6587. doi: 10.1039/D1FO00521A
|
[19] |
罗白玲, 刘敦华, 董文江, 等. 超微粉碎对咖啡果皮理化性质、结构及吸附能力的影响[J]. 热带作物学报,2020,41(6):1219−1226. [LUO B L, LIU D H, DONG W J, et al. Effect of ultrafine grinding on physicochemical properties, structure and adsorption capacity of coffee peel[J]. Chinese Journal of Tropical Crops,2020,41(6):1219−1226.
|
[20] |
MA T, SUN X, ZHAO J. Nutrient compositions and antioxidant capacity of kiwifruit (Actinidia) and their relationship with flesh color and commercial value[J]. Food Chemistry, 2017, 218:294−304.
|
[21] |
WANG Y, ZHOU Y L, CHENG Y K, et al. Enzymo chemical preparation, physico-chemical characterization and hypolipidemic activity of granular corn bran dietary fibre[J]. Journal of Food Science and Technology ,2015,52:1718−1723.
|
[22] |
WU W, HU J, GAO H, et al. The potential cholesterol-lowering and prebiotic effects of bamboo shoot dietary fibers and their structural characteristics[J]. Food Chemistry,2020,332:127372. doi: 10.1016/j.foodchem.2020.127372
|
[23] |
张晋, 谭芦兰, 陈伊凡, 等. 可溶性膳食纤维强化重组蛋片的响应面优化制备和品质评价[J]. 中国食品学报,2020,20(12):155−166. [ZHANG J, TAN L L, CHEN Y F, et al. Response surface optimization and quality evaluation of soluble dietary fiber fortified restructuring egg white curd[J]. Journal of Chinese Institute of Food Science and Technology,2020,20(12):155−166.
|
[24] |
孙静, 邵佩兰, 徐明, 等. 高温蒸煮结合酶解改性枣渣膳食纤维[J]. 食品工业科技,2017,38(23):137−142. [SUN J, SHAO P L, XU M, et al. Technology optimization on steam-cooking combing with enzymatic hydrolysis modification of dietary fiber from jujube residues[J]. Science and Technology of Food Industry,2017,38(23):137−142.
|
[25] |
张艳莉, 王颖, 王迪, 等. 芸豆渣膳食纤维超声辅助酶法提取工艺优化及特性研究[J]. 食品与机械,2019,35(10):201−205. [ZHANG Y L, WANG Y, WANG D, et al. Optimination of ultrasonic assisited enzymatic extraction of dietary fiber from light speckled kidney bean[J]. Food & Machinery,2019,35(10):201−205.
|
[26] |
牛希, 史乾坤, 赵城彬, 等. 超声改性对燕麦膳食纤维理化性质及结构的影响[J]. 食品科学,2020,41(23):130−136. [NIU X, SHI Q K, ZHAO C B, et al. Effect of ultrasonic modification on physicochemical properties and structure of oat dietary fiber[J]. Food Science,2020,41(23):130−136. doi: 10.7506/spkx1002-6630-20191118-201
|
[27] |
MOCZKOWSKA M, KARP S, NIU Y, et al. Enzymatic, enzymaticultrasonic and alkaline extraction of soluble dietary fibre from flaxseed:A physicochemical approach[J]. Food Hydrocolloids,2019,90(5):105−112.
|
[28] |
DU X J, WANG L, HUANG X, et al. Effects of different extraction methods on structure and properties of soluble dietary fiber from defatted coconut flour[J]. LWT-Food Science and Technology,2021,143(1):111031.
|
[29] |
ZHANG W M, ZENG G L, PAN Y G, et al. Properties of soluble dietary fiber-polysaccharide from papaya peel obtained through alkaline or ultrasound-assisted alkaline extraction[J]. Carbohydrate Polymers,2017,172(9):102−112.
|
[30] |
CHEN T T, ZHANG Z H, WANG Z W, et al. Effects of ultrasound modification at different frequency modes on physicochemical, structural, functional, and biological properties of citrus pectin[J]. Food Hydrocolloids, 2021, 113(12):106484.
|
[31] |
ZHUANG X B, JIANG X P, HAN M Y, et al. Influence of sugarcane dietary fiber on water states and microstructure of myofibrillar protein gels[J]. Food Hydrocolloids, 2016, 57:253-261.
|
[32] |
ZHONG L Z, FANG Z X, WAHLQVIST M L, et al. Extrusion cooking increases soluble dietary fibre of lupin seed coat[J]. LWT-Food Science and Technology,2019,99:547−554. doi: 10.1016/j.lwt.2018.10.018
|
[33] |
WANG Y P, DUAN D L, LIU Y H, et al. Properties and pyrolysis behavior of moso bamboo sawdust after microwave-assisted acid pretreatment[J]. Journal of Analytical and Applied Pyrolysis,2018,129(1):86−92.
|
[34] |
ALFRODO V O, GABRIEL R R, LUIS C G , et al. Physicochemical properties of a fibrous fraction from chia (Salvia hispanica L.)[J]. LWT-Food Science and Technology, 2009, 42(1):168−173.
|
[35] |
LIU M, ZHOU S H, LI Y X, et al. Structure, physicochemical properties and effects on nutrients digestion of modified soluble dietary fiber extracted from sweet potato residue[J]. Food Research International, 2021, 150:110761.
|
[36] |
GILL S K, ROSSI M, BAJKA B, et al. Dietary fibre in gastrointestinal health and disease[J]. Nature Reviews Gastroenterology & Hepatology,2021,18(2):101−116.
|
[37] |
牛潇潇, 梁亮, 王宁, 等. 超微粉碎及不同粒度对马铃薯渣功能特性的影响[J]. 中国粮油学报,2022,37(1):37−45. [NIU X X, LIANG L, WANG N, et al. Effects of superfine grinding and different particle sizes on functional characteristics of patato residues[J]. Journal of the Chinese Cereals and Oils Association,2022,37(1):37−45.
|
[38] |
SHEN M, WANG W H, CAO L. Soluble dietary fibers from black soybean hulls:Physical and enzymatic modification, structure, physical properties, and cholesterol binding capacity[J]. Journal of Food Science,2020,85(1):1668−1674.
|
[39] |
WANG X J, ZHANG Y Y, LI Y B, et al. Insoluble dietary fibre from okara (S oybean residue) modified by yeast Kluyveromyces marxianus[J]. LWT-Food Science and Technology,2020,134(12):110252.
|