Citation: | FU Ming, ZANG Yanqing. Effect of Lactobacillus acidophilus M6 on Improving Exercise Performance and Relieving Fatigue in Mice[J]. Science and Technology of Food Industry, 2023, 44(23): 330−336. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023020065. |
[1] |
YOU L J, ZHAO M M, REGENSTEIN J M, et al. In vitro antioxidant activity and in vivo anti-fatigue effect of loach ( Misgurnus anguillicaudatus) peptides prepared by papain digestion[J]. Food Chemistry,2011,124(1):188−194. doi: 10.1016/j.foodchem.2010.06.007
|
[2] |
TAN W, YU K Q, LIU Y Y, et al. Anti-fatigue activity of polysaccharides extract from Radix Rehmanniae Preparata[J]. International Journal of Biological Macromolecules,2012,50(1):59−62. doi: 10.1016/j.ijbiomac.2011.09.019
|
[3] |
UTHAYATHAS S, KARUPPAGOUNDER S S, TAMER S I, et al. Evaluation of neuroprotective and anti-fatigue effects of sildenafil[J]. Life Sciences,2007,81(12):988−992. doi: 10.1016/j.lfs.2007.07.018
|
[4] |
NI W H, GAO T T, WANG H L, et al. Anti-fatigue activity of polysaccharides from the fruits of four Tibetan plateau indigenous medicinal plants[J]. Journal of Ethnopharmacology,2013,150(2):529−535. doi: 10.1016/j.jep.2013.08.055
|
[5] |
DAVIS J M. Central and peripheral factors in fatigue[J]. Journal of Sports Sciences,1995,13(S1):S49−S53.
|
[6] |
ZAJĄC A, CHALIMONIUK M, GOŁAŚ A, et al. Central and peripheral fatigue during resistance exercise-a critical review[J]. Journal of Human Kinetics,2015,49(1):159−169. doi: 10.1515/hukin-2015-0118
|
[7] |
WAN J J, QIN Z, WANG P Y, et al. Muscle fatigue: General understanding and treatment[J]. Experimental & molecular medicine,2017,49(10):e384.
|
[8] |
GUO Z B, LIN D Q, GUO J J, et al. In vitro antioxidant activity and in vivo anti-fatigue effect of sea horse (hippocampus) peptides[J]. Molecules,2017,22(3):482. doi: 10.3390/molecules22030482
|
[9] |
YE J, SHEN C H, HUANG Y Y, et al. Anti-fatigue activity of sea cucumber peptides prepared from Stichopus japonicus in an endurance swimming rat model[J]. Journal of the Science of Food and Agriculture,2017,97(13):4548−4556. doi: 10.1002/jsfa.8322
|
[10] |
KAN N W, HUANG W C, LIN W T, et al. Hepatoprotective effects of Ixora parviflora extract against exhaustive exercise-induced oxidative stress in mice[J]. Molecules,2013,18(9):10721−10732. doi: 10.3390/molecules180910721
|
[11] |
BINDA S, HILL C, JOHANSEN E, et al. Criteria to qualify microorganisms as “probiotic” in foods and dietary supplements [J]. Frontiers in Microbiology, 2020(11):1662.
|
[12] |
KHANI S, HOSSEINI H M, TAHERI M, et al. Probiotics as an alternative strategy for prevention and treatment of human diseases:A review[J]. Inflammation & Allergy-Drug Targets (Formerly Current Drug Targets-Inflammation & Allergy)(Discontinued),2012,11(2):79−89.
|
[13] |
SIVAMARUTHI B S, KESIKA P, SUGANTHY N, et al. A review on role of microbiome in obesity and antiobesity properties of probiotic supplements[J]. BioMed Research International, 2019:3291367.
|
[14] |
SICHETTI M, DE MARCO S, PAGIOTTI R, et al. Anti-inflammatory effect of multistrain probiotic formulation ( L. rhamnosus, B. lactis, and B. longum)[J]. Nutrition,2018,53:95−102. doi: 10.1016/j.nut.2018.02.005
|
[15] |
KANG M S, LIM H S, OH J S, et al. Antimicrobial activity of Lactobacillus salivarius and Lactobacillus fermentum against Staphylococcus aureus[J]. Pathogens and Disease, 2017, 75(2).
|
[16] |
TIPTIRI-KOURPETI A, SPYRIDOPOULOU K, SANTARMAKI V, et al. Lactobacillus casei exerts anti-proliferative effects accompanied by apoptotic cell death and up-regulation of TRAIL in colon carcinoma cells[J]. PLoS One,2016,11(2):e0147960. doi: 10.1371/journal.pone.0147960
|
[17] |
DÍAZ-JIMÉNEZ J, SÁNCHEZ-SÁNCHEZ E, ORDOÑEZ F J, et al. Impact of probiotics on the performance of endurance athletes:A systematic review[J]. International Journal of Environmental Research and Public Health,2021,18(21):11576. doi: 10.3390/ijerph182111576
|
[18] |
YUN J H, KIM Y A, CHUNG M J, et al. Hepatoprotective and anti-fatigue effects of lactic acid bacteria ( Lactobacillus acidophilus, Bifidobacterium bifidum and Streptococcus thermophilus)[J]. Toxicological Research,2007,23(1):11−17. doi: 10.5487/TR.2007.23.1.011
|
[19] |
夏亚丽. 补充益生菌改善过度运动大鼠骨骼肌炎症反应的机制研究[D]. 上海:上海体育学院, 2020. [XIA Y L. Research on the mechanism of probiotics supplementation toimprove muscle inflammation in overtraining rats[D]. Shanghai:Shanghai University of Sport, 2020.
XIA Y L. Research on the mechanism of probiotics supplementation toimprove muscle inflammation in overtraining rats[D]. Shanghai: Shanghai University of Sport, 2020.
|
[20] |
CALLISTER R, CLANCY R, GLEESON M, et al. Effect of Lactobacillus acidophilus probiotic treatment in fatigued athletes with an interferon-defect[J]. Medicine and Science in Sports and Exercise,2006,38(5):S30.
|
[21] |
SULLIVAN Å, NORD C E, EVENGÅRD B. Effect of supplement with lactic-acid producing bacteria on fatigue and physical activity in patients with chronic fatigue syndrome[J]. Nutrition Journal,2009,8(1):1−6. doi: 10.1186/1475-2891-8-1
|
[22] |
HUANG W C, HSU Y J, HUANG C C, et al. Exercise training combined with Bifidobacterium longum OLP-01 supplementation improves exercise physiological adaption and performance[J]. Nutrients,2020,12(4):1145. doi: 10.3390/nu12041145
|
[23] |
CHEN W C, HUANG W C, CHIU C C, et al. Whey protein improves exercise performance and biochemical profiles in trained mice[J]. Medicine and Science in Sports and Exercise,2014,46(8):1517. doi: 10.1249/MSS.0000000000000272
|
[24] |
BINDELS L B, BECK R, SCHAKMAN O, et al. Restoring specific lactobacilli levels decreases inflammation and muscle atrophy markers in an acute leukemia mouse model[J]. PLoS One,2012,7(6):e37971. doi: 10.1371/journal.pone.0037971
|
[25] |
WHITE J P, BAYNES J W, WELLE S L, et al. The regulation of skeletal muscle protein turnover during the progression of cancer cachexia in the ApcMin/+mouse[J]. PLoS One,2011,6(9):e24650. doi: 10.1371/journal.pone.0024650
|
[26] |
ZHANG Y, YAO X B, BAO L L, et al. Anti-fatigue activity of a triterpenoid-rich extract from Chinese bamboo shavings (Caulis bamfusae in taeniam)[J]. Phytotherapy Research:An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives,2006,20(10):872−876.
|
[27] |
WANG J, LI S, FAN Y, et al. Anti-fatigue activity of the water-soluble polysaccharides isolated from Panax ginseng CA Meyer[J]. Journal of Ethnopharmacology,2010,130(2):421−423. doi: 10.1016/j.jep.2010.05.027
|
[28] |
SURHIO M M, WANG Y, FANG S, et al. Anti-fatigue activity of a Lachnum polysaccharide and its carboxymethylated derivative in mice[J]. Bioorganic & Medicinal Chemistry Letters,2017,27(20):4777−4780.
|
[29] |
YEH T S, HUANG C C, CHUANG H L, et al. Angelica sinensis improves exercise performance and protects against physical fatigue in trained mice[J]. Molecules,2014,19(4):3926−3939. doi: 10.3390/molecules19043926
|
[30] |
XI X Z, GUO S S, GUO H, et al. Anti-exercise-fatigue and promotion of sexual interest activity of total flavonoids from wasps drone-pupae in male mice[J]. Biomedicine & Pharmacotherapy,2018,107:254−261.
|
[31] |
LEE M C, HSU Y J, HO H H, et al. Lactobacillus salivarius subspecies salicinius SA-03 is a new probiotic capable of enhancing exercise performance and decreasing fatigue[J]. Microorganisms,2020,8(4):545. doi: 10.3390/microorganisms8040545
|
[32] |
FINSTERER J. Biomarkers of peripheral muscle fatigue during exercise[J]. BMC Musculoskeletal Disorders,2012,13(1):1−13. doi: 10.1186/1471-2474-13-1
|
[33] |
LEE M C, HSU Y J, HO H H, et al. Effectiveness of human-origin Lactobacillus plantarum PL-02 in improving muscle mass, exercise performance and anti-fatigue[J]. Scientific Reports,2021,11(1):1−12. doi: 10.1038/s41598-020-79139-8
|
[34] |
WANG J J, SHIEH M J, KUO S L, et al. Effect of red mold rice on antifatigue and exercise-related changes in lipid peroxidation in endurance exercise[J]. Applied Microbiology and Biotechnology,2006,70(2):247−253. doi: 10.1007/s00253-005-0051-5
|
[35] |
WEI L, WEN Y T, LEE M C, et al. Effects of isolated soy protein and strength exercise training on exercise performance and biochemical profile in postpartum mice[J]. Metabolism,2019,94:18−27. doi: 10.1016/j.metabol.2019.01.012
|
[36] |
LI Y C, ZHENG X L, LIU B T, et al. Regulation of ATGL expression mediated by leptin in vitro in porcine adipocyte lipolysis[J]. Molecular and Cellular Biochemistry,2010,333(1):121−128.
|
[37] |
ZHANG J, CHEN L, ZHANG L, et al. Effect of Lactobacillus fermentum HFY03 on the antifatigue and antioxidation ability of running exhausted mice[J]. Oxidative Medicine and Cellular Longevity, 2021:8013681.
|
[38] |
POWERS S K, DERUISSEAU K C, QUINDRY J, et al. Dietary antioxidants and exercise[J]. Journal of Sports Sciences,2004,22(1):81−94. doi: 10.1080/0264041031000140563
|
[39] |
夏亚丽, 伊木清. 补充益生菌改善运动应激及其机制研究进展[J]. 中国运动医学杂志,2019,8(38):704−711. [XIA Y L, YI M Q. Research progress on supplementing probiotics to improve exercise stress and its mechanism[J]. Chinese Journal of Sports Medicine,2019,8(38):704−711. doi: 10.3969/j.issn.1000-6710.2019.08.010
|
[40] |
YANG Q Y, LAI X D, OUYANG J, et al. Effects of ginsenoside Rg3 on fatigue resistance and SIRT1 in aged rats[J]. Toxicology,2018,409:144−1451. doi: 10.1016/j.tox.2018.08.010
|
[41] |
CHI A P, LI H, KANG C Z, et al. Anti-fatigue activity of a novel polysaccharide conjugates from Ziyang green tea[J]. International Journal of Biological Macromolecules,2015,80:566−572. doi: 10.1016/j.ijbiomac.2015.06.055
|
[42] |
LUO C H, XU X R, WEI X C, et al. Natural medicines for the treatment of fatigue:Bioactive components, pharmacology, and mechanisms[J]. Pharmacological Research,2019,148:104409. doi: 10.1016/j.phrs.2019.104409
|
[43] |
HSU W H, QIU W L, TSAO S M, et al. Effects of WSG, a polysaccharide from Ganoderma lucidum, on suppressing cell growth and mobility of lung cancer[J]. International Journal of Biological Macromolecules,2020,165:1604−1613. doi: 10.1016/j.ijbiomac.2020.09.227
|
[44] |
YI R K, FENG M, CHEN Q P, et al. The effect of Lactobacillus plantarum CQPC02 on fatigue and biochemical oxidation levels in a mouse model of physical exhaustion[J]. Frontiers in Nutrition, 2021, 8.
|
[45] |
HUANG W C, WEI C C, HUANG C C, et al. The beneficial effects of Lactobacillus plantarum PS128 on high-intensity, exercise-induced oxidative stress, inflammation, and performance in triathletes[J]. Nutrients,2019,11(2):353. doi: 10.3390/nu11020353
|
[1] | SUN Ruiyin, WANG Ruixue, E Jingjing, YAO Caiqing, HE Zongbai, ZHANG Qiaoling, CHEN Zichao, MA Rongze, BAO Qiuhua, WANG Junguo. Effect of Calcium Ions on the Freeze-drying Resistance of Lactobacillus plantarum LIP-1[J]. Science and Technology of Food Industry, 2021, 42(17): 100-106. DOI: 10.13386/j.issn1002-0306.2020110151 |
[2] | ZOU Yong, WEI Rifeng, HUANG Weiqing, ZHOU Fengfang, LIN Shan, ZHENG Shizhong, JIANG Shengtao, LI Dongdong, LIU Wei. Effects of Chimonanthus salicifolius Aleoholic Extracts on Growth, Muscle Quality and Intestinal Morphology of Larimichthys crocea[J]. Science and Technology of Food Industry, 2021, 42(4): 18-25. DOI: 10.13386/j.issn1002-0306.2020050157 |
[3] | JIA Zhen-yu, SUN Hui-hui, HAO Xu-sheng, KANG Shen-min, ZHENG Xiao-ying, GUO Du, SUN Yi, SHI Chao, XIA Xiao-dong. Inhibitory Activity of Thymol and Carvacrol Against Cronobacter sakazakii[J]. Science and Technology of Food Industry, 2018, 39(20): 79-86. DOI: 10.13386/j.issn1002-0306.2018.20.014 |
[4] | LIU Shuai, ZHAO Guan-hua, YANG Qing-qing, TONG Chang-qing, LI Wei. Effect of a lectin CSL on the morphology of yeast Saccharomyces cerevisiae[J]. Science and Technology of Food Industry, 2017, (24): 114-119. DOI: 10.13386/j.issn1002-0306.2017.24.023 |
[5] | CHU Thi-le-hoa, XIE Jia, HE Song-gui, YU Jian-xia, LI Wei-gang, WU Zhen-qiang. Evaluation of immersion using warm water on the removal of off-flavor from raw pork and its weight loss[J]. Science and Technology of Food Industry, 2016, (23): 328-332. DOI: 10.13386/j.issn1002-0306.2016.23.053 |
[6] | YANG Xu-qiu, CHEN Jian-feng, ZHENG Xiang-nan, XIE You-ping. Effects of light intensity and nitrogen limitation on cell growth and cell composition of Chlorella sorokiniana[J]. Science and Technology of Food Industry, 2016, (18): 246-250. DOI: 10.13386/j.issn1002-0306.2016.18.038 |
[7] | WANG Peng-fei, DI Qian-qian, LIU Bin, ZHOU Xiao-jing. Effect of freezing rate on some structural parameters of carrot cells[J]. Science and Technology of Food Industry, 2015, (10): 125-129. DOI: 10.13386/j.issn1002-0306.2015.10.017 |
[8] | LIU Bin, LI Yuan-yuan, WANG Xiao-ming, CAO Feng-bo, HUO Gui-cheng, YANG Li-jie. Effect of colostrum growth factors extracts on proliferation and migration of CaCO-2 cells[J]. Science and Technology of Food Industry, 2015, (07): 354-358. DOI: 10.13386/j.issn1002-0306.2015.07.066 |
[9] | SHEN Yu-zhen, YU Hai-ning, ZHANG Cheng-cheng, ZENG Si-min, SHEN Sheng-rong. Effects of condensed fish oil on the growth of prostate cells in vitro[J]. Science and Technology of Food Industry, 2014, (12): 358-364. DOI: 10.13386/j.issn1002-0306.2014.12.070 |
[10] | WANG Dan, LEI Yong-dong, MA Yue, ZHANG Li, ZHAO Xiao-yan. Effect of anthocyanins from three kind of purple plants on ST cells growth[J]. Science and Technology of Food Industry, 2013, (23): 104-107. DOI: 10.13386/j.issn1002-0306.2013.23.024 |
1. |
王鑫,杨梦媛,修伟业,遇世友,王景阳,马永强. 甜玉米芯多糖铁配合物的工艺优化及体外活性. 精细化工. 2024(10): 2280-2289 .
![]() | |
2. |
鲍彤彤,崔海燕,段然,纪龙翔,吕向云,高乐,吴信. 大豆蛋白肽-微量元素螯合物的制备及结构表征. 食品与发酵工业. 2024(21): 170-174 .
![]() | |
3. |
李小军,马晓辉,段国建,姜红,曾凡逵,高作旺,董文静,王引权,晋玲. 兰州百合多糖铁(Ⅲ)配合物制备工艺的Box-Behnken响应面法优化及其体外抗氧化活性评价. 现代食品科技. 2024(12): 201-208 .
![]() | |
4. |
杜国丰,尹梦琪,梁飞龙,姜宁,陈红漫,矫继峰,刘凤翊. 微波辅助H_2O_2/V_C降解制备低分子量浒苔多糖的研究. 食品工业科技. 2023(12): 37-44 .
![]() | |
5. |
高然,苏贇,陈俊德,郑美华. 硫酸软骨素螯合锌的制备、表征及体外生物活性. 食品工业科技. 2022(09): 194-202 .
![]() | |
6. |
毛嘉敏,陈昱瑶,宋洁,张燕,王婧贤,李馨雨,范柳萍,成向荣. 具有铁螯合能力的驴骨胶原肽酶解条件优化及微观形态. 粮油食品科技. 2022(05): 188-196 .
![]() | |
7. |
钟普鹏,胡嘉宁,胡德宝,秦顺义,洪亮,马吉飞,李桂霞,李瑞忠. 姬松茸多糖铁(Ⅲ)合成方法的研究. 食品科技. 2021(03): 232-237 .
![]() | |
8. |
舒畅,夏洁,袁帅,赵帅,张西锋,鄢又玉. 响应面优化羧甲基茯苓多糖铁复合物的制备. 食品研究与开发. 2019(08): 188-194+211 .
![]() | |
9. |
张喜峰,崔晶,王文琴,罗光宏,杨生辉. 螺旋藻多糖铁(Ⅲ)配合物的制备、抗氧化及淋巴细胞增殖活性. 精细化工. 2019(06): 1097-1103 .
![]() | |
10. |
景永帅,张瑞娟,吴兰芳,郑玉光,高心悦,郝彤宇,张丹参. 多糖铁复合物的结构特征和生理活性研究进展. 食品研究与开发. 2019(22): 203-208 .
![]() | |
11. |
李石清,袁强,蒋福升,张婷,张春椿. 制首乌多糖Fe(Ⅲ)配合物的合成及吸附动力学研究. 中国现代中药. 2019(10): 1382-1385 .
![]() |