File failed to load: https://mathjax.xml-journal.net/platformTools/js/MathJax-master/config/TeX-AMS-MML_SVG.js
SU Hanmei, YIN Haining, ZHANG Kenan, et al. Exogenous Sugar Effects on Fruit Quality in 'Petit Verdot' Grape Berry in Vitro[J]. Science and Technology of Food Industry, 2023, 44(21): 119−126. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023020055.
Citation: SU Hanmei, YIN Haining, ZHANG Kenan, et al. Exogenous Sugar Effects on Fruit Quality in 'Petit Verdot' Grape Berry in Vitro[J]. Science and Technology of Food Industry, 2023, 44(21): 119−126. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023020055.

Exogenous Sugar Effects on Fruit Quality in 'Petit Verdot' Grape Berry in Vitro

More Information
  • Received Date: February 07, 2023
  • Available Online: September 06, 2023
  • The test material in this experiment was the wine grape variety 'Petit Verdot' (Vitis vinifera L.cv. Petit Verdot). Sucrose, glucose, fructose, and rhamnose were selected for sugars, with mass fractions of 2%, 5% and 8%, respectively. The grape was sprayed with exogenous sugars and cultured in vitro for 12 days in a plant growth incubator. The rate of fruit color change was monitored and analyzed, and the primary quality indicators such as titratable acids, reducing sugars, anthocyanins and non-anthocyanin phenolics were examined extensively using principal component analysis. According to the results, under in vitro culture conditions, fructose, sucrose and rhamnose improved grape fruit quality significantly, while glucose had no obvious effect on grape fruit quality. In terms of improving the comprehensive quality of fruit, the best treatment effect was fructose, with 8% Fru ranking the first, 5%Fru ranking the second and 2% Fru ranking the ninth. The optimum concentration of 2% Suc ranked third overall, 8% Suc ranked fifth overall, and 5% Suc ranked eighth. Rhamnose optimal concentration of 5%, ranked in the fourth, 2% Rha ranked sixth, 8% Rha ranking behind in the control group, as the 12th. Glucose function was not obvious to improve the quality of the grapes, 2% Glu ranking in the seventh, higher than that of control group two, while both 5% and 8% Glu ranked lower than the control, at 13 and 11, respectively. According to the scores of principal component 1 and principal component 2, fructose significantly promoted the accumulation of anthocyanins and phenols (principal component 1), in which 5% Fru scored the highest, 8% Fru the second and 2% Fru the third. Sucrose significantly increased the content of soluble solids, reducing sugars and titratable acids (principal component 2), with 2% Suc scoring highest, 5% Suc second, and 8% Suc sixth. To sum up, different kinds of sugar into the skin cells may have different metabolic pathways and metabolites, the mechanisms of metabolism of different types of sugars in grape skin cells need to be further explored.
  • [1]
    张振文. 葡萄酒品种学[M]. 西安: 西安地图出版社, 2000:61−62

    ZHANG Z W. Ampelography[M]. Xi'an:Xi'an Map Press, 2000: 61−62.
    [2]
    张晓煜, 亢艳莉, 袁海燕, 等. 酿酒葡萄品质评价及其对气象条件的响应[J]. 生态学报,2007,27(2):740−745

    ZHANG X Y, KANG Y L, YUAN H Y, et al. The quality evaluation of wine grape and its respond to weather condition[J]. Acta Ecologica Sinica,2007,27(2):740−745.
    [3]
    谢兆森, 王世平, 许文平. 葡萄果实中的糖分积累和调控[J]. 植物生理学通讯,2008(4):178183

    XIE Z S, WANG S P, XU W P. Accumulation of sugars and their regulation in grape berries[J]. Plant Physiology Journal,2008(4):178183.
    [4]
    牛生洋, 武凌峰, 赵瑞香, 等. 葡萄果实花色苷合成调控研究进展[J]. 食品科学,2015,36(9):219−223 doi: 10.7506/spkx1002-6630-201509041

    NIU S Y, WU L F, ZHAO R X, et al. Progress in regulation of anthocyanin biosynthesis in grape berries[J]. Food Science,2015,36(9):219−223. doi: 10.7506/spkx1002-6630-201509041
    [5]
    GóMEZ GALLEGO M, GóMEZ GARCíA-CARPINTERO E, SáNCHEZ-PALOMO E, et al. Study of phenolic composition and sensory properties of red grape varieties in danger of extinction from the Spanish region of Castilla-La mancha[J]. European Food Research and Technology,2011,234(2):295−303.
    [6]
    赵新节, 韩爱芹, 杨亲正, 等. 葡萄花色苷合成的影响因素研究进展[J]. 食品工业科技,2015,36(18):391−394

    ZHAO X J, HAN A Q, YANG Q Z, et al. Research on factors influencing the biosynthesis of anthocyanin in grape fruit[J]. Science and Technology of Food Industry,2015,36(18):391−394.
    [7]
    姜润丽, 马起林, 赵洪康. 酿酒葡萄的整形修剪技术[J]. 落叶果树,2006(6):45−46 doi: 10.3969/j.issn.1002-2910.2006.06.021

    JIANG R L, MA Q L, ZHAO H K. Shaping and pruning techniques of wine grapes[J]. Deciduous Fruits,2006(6):45−46. doi: 10.3969/j.issn.1002-2910.2006.06.021
    [8]
    王辉, 赵晨霞. 采前栽培技术措施对有机酿酒葡萄品质的影响[J]. 北京农业,2009(3):27−30

    WANG H, ZHAO C L. Influence of the cultural technique measure before pick on the quality of organic wine grape[J]. Beijing Agriculture,2009(3):27−30.
    [9]
    王小龙, 张正文, 钟晓敏, 等. 不同施肥对酿酒葡萄果实产量和品质的影响[J]. 中国南方果树,2020,49(2):107−113

    WANG X L, ZHANG Z W, ZHONG X M, et al. Effects of different fertilization on fruit yield and quality of wine grapes[J]. Southern Chinese fruit trees,2020,49(2):107−113.
    [10]
    张铁兵. 植物生长调节剂在葡萄生产中的应用[J]. 果树资源学报,2021,2(2):60−62

    ZHANG T B. Application techniques of plant growth regulators in grape planting[J]. Journal of Fruit Tree Resources,2021,2(2):60−62.
    [11]
    SOLFANELLI C, POGGI A, LORETI E, et al. Sucrose specific induction of the anthocyanin biosynthetic pathway in Arabidopsis[J]. Plant Physiology,2006,140:637−646. doi: 10.1104/pp.105.072579
    [12]
    LARRONDE F, KRISA S, DECENDIT A, et al. Regulation of polyphenol production in Vitis vinifera cell suspension cultures by sugars[J]. Plant Cell Reports,1998,17(12):946. doi: 10.1007/s002990050515
    [13]
    AZUMA A, KOSHITA Y, KOBAYASHI S. Flavonoid biosynthesis-related genes in grape skin are differentially regulated by temperature and light conditions[J]. Planta,2012,236(4):1067−1080. doi: 10.1007/s00425-012-1650-x
    [14]
    PéREZ F, MEZA P, BERTI M, et al. Effect of carbon source and sucrose concentration on growth and hexose accumulation of grape berries cultured in vitro[J]. Plant Cell, Tissue and Organ Culture,2000,61, 37−40. doi: 10.1023/A:1006494918336
    [15]
    ZHENG Y J, LI T, LIU H T, et al. Sugars induce anthocyanin accumulation and flavanone 3-hydroxylase expression in grape berries[J]. Plant Growth Regulation,2009,58(3):251−260. doi: 10.1007/s10725-009-9373-0
    [16]
    凌亚杰, 莫琴, 莫凡, 等. 外源糖处理对草莓果实品质和主要生物活性物质的影响[J]. 四川农业大学学报,2018,36(1):67−71

    LING Y J, MO, MO F, et al. Effects of exogenous sugar treatment on fruit quality and main bioactive compounds in strawberry[J]. Journal of Sichuan Agricultural University,2018,36(1):67−71.
    [17]
    LI D, ZHANG X, XU Y, et al. Effect of exogenous sucrose on anthocyanin synthesis in postharvest strawberry fruit[J]. Food Chemistry,2019(289):112−120.
    [18]
    ZHANG X, LI B, DUAN R, et al. Transcriptome analysis reveals roles of sucrose in anthocyanin accumulation in 'Kuerle Xiangli' ( Pyrus sinkiangensis Yu)[J]. Genes (Basel),2022,13(6):1064. doi: 10.3390/genes13061064
    [19]
    刘雪峰, 向苹苇, 马晓丽, 等. 外源糖处理对塔罗科血橙果实品质的影响[J]. 安徽农业科学,2021,49(9):48−50,53

    LIU X F, XIANG P W, MA X L, et al. Effects of exogenous sugar treatment on the quality of Taroko Blood orange fruit[J]. Journal of Anhui Agricultural Science,2021,49(9):48−50,53.
    [20]
    彭舒, 张婷渟, 李丽, 等. 外源蔗糖处理对蓝莓果实发育过程关键品质的影响[J]. 绿色科技,2020(17):82−84

    PENG S, ZHANG T T, LI L, et al. Effects of exogenous sucrose treatment on key qualities of blueberry fruit development[J]. Journal of Green Science and Technology,2020(17):82−84.
    [21]
    DAI Z W, MEDDAR M, RENAUD C, et al. Long-term in vitro culture of grape berries and its application to assess the effects of sugar supply on anthocyanin accumulation[J]. Journal of Experimental Botany,2014(16):4665.
    [22]
    DAI Z W, MEDDAR M, DELROT S, et al. Development and implementation of an in vitro culture system for intact detached grape berries[J]. Bio-Protocol,2015,5:1510.
    [23]
    MAO J, LI W, MI B, et al. Different exogenous sugars affect the hormone signal pathway and sugar metabolism in “red globe” ( Vitis vinifera L.) plantlets grown in vitro as shown by transcriptomic analysis[J]. Planta,2017,246, 537−552. doi: 10.1007/s00425-017-2712-x
    [24]
    HIRATSUKA S, ONODERA H, KAWAI Y, et al. ABA and sugar effects on anthocyanin formation in grape berry cultured in vitro[J]. Scientia Horticulturae,2001,90(1-2):121−130. doi: 10.1016/S0304-4238(00)00264-8
    [25]
    栾丽英. 油菜素内酯和脱落酸对酿酒葡萄花色苷调控及葡萄酒品质影响的研究[D]. 杨凌:西北农林科技大学, 2014

    LUAN L Y. Study of the regulation of anthocyanin synthesis of grape and the quality of wine after brassinolide and abacisic acid treatments[D]. Yangling:Northwest Agriculture and Forestry University, 2014.
    [26]
    晁无疾, 陆家云. 脱落酸对葡萄上色和果实品质的影响[J]. 中外葡萄与葡萄酒,2008(5):29−30, 34

    CHAO W J, LU J Y. Effect of abscisic acid on grape coloring and fruit quality[J]. Sino-overseas Grapevine & Wine,2008(5):29−30, 34.
    [27]
    王华. 葡萄酒分析检验[M]. 北京:中国农业出版社, 2004:124−128

    WANG H. Wine analysis and inspection[M]. Beijing:China Agriculture Press, 2004:124−128.
    [28]
    苏鹏飞. 宁夏青铜峡产区主栽红色酿酒葡萄成熟度控制指标的研究[D]. 杨凌:西北农林科技大学, 2016

    SU P F. Study of maturity control indexes of major red wine grapes from Qingtongxia city in Ningxia[D]. Yangling:Northwest Agriculture and Forestry University, 2016.
    [29]
    郝笑云, 王宏, 张军翔. 酚类物质对红葡萄酒颜色影响的研究进展[J]. 现代食品科技,2013,29(5):1192−1197

    HAO X Y, WANG H, ZHANG J X. Research progress of influence of phenolic compounds on color of grape wine[J]. Modern Food Science and Technology,2013,29(5):1192−1197.
    [30]
    孙凌俊, 马丽, 王振家. 葡萄果实糖代谢的研究进展[J]. 中外葡萄与葡萄酒,2008,6:70−72

    SUN L J, MA L, WANG Z J. Research progress on sugar metabolism in grape fruits[J]. Sino-overseas Grapevine & Wine,2008,6:70−72.
    [31]
    方芳, 王凤忠. UV-B照射对采后葡萄果实品质和黄酮醇积累的影响[J]. 食品工业科技,2017,38(19):272−277,283

    FANG F, WANG F Z. Effect of UV-B irradiation on fruit quality and flavonol accumulation of postharvest grape berry[J]. Science and Technology of Food Industry,2017,38(19):272−277,283.
    [32]
    王贵元. 红肉脐橙(Citrus sinensis Osbeck cv. Cara Cara Navel orange)果实着色和糖积累规律的研究[D]. 武汉:华中农业大学, 2005

    WANG G Y. Study on the rules of coloring and sugar accumulation in Cara Cara Navel orange (Citrus sinensis Osbeck cv. Cara Cara Navel orange)[D]. Wuhan:Central China Agricultural University, 2005.
    [33]
    回学宽, 王艳丽, 祝贺, 等. 葡萄酒中酚类物质的研究进展[J]. 中国果菜,2019,39(11):65−71,79

    HIU X K, WANG Y L, ZHU H. Progress in polyphenol of wines[J]. China Fruit & Vegetable, 2019,39(11):65−71,79.
    [34]
    王秀芹, 张庆华, 战吉成, 等. 产地与品种对葡萄酒中酚类物质含量的影响[J]. 食品科学,2009,30(21):113−118 doi: 10.3321/j.issn:1002-6630.2009.21.027

    WANG X Q, ZHANG Q H, ZHAN J C. Effects of grape varieties and geographical origins on contents of phenolic compounds in grape wine[J]. Food Science,2009,30(21):113−118. doi: 10.3321/j.issn:1002-6630.2009.21.027
    [35]
    赵旭, 张欣珂, 陈新军, 等. 葡萄酒中的酚类物质Ⅱ:辅色效应与生物活性研究进展[J]. 食品科学,2019,40(17):284−294

    ZHAO X, ZHANG X K, CHEN X J, et al. Phenolics in wines II:Progress in research on co-pigmentation and bioactivities[J]. Food Science,2019,40(17):284−294.
    [36]
    雷鸣. 植物生长调节剂、糖、光质对红地球葡萄果实品质的影响[D]. 合肥:安徽农业大学, 2008

    LEI M. Influence of plant growth regulator, sugar and light quality on fruit quality of Red Globe grapes[D]. Hefei:Anhui Agricultural University, 2008.
    [37]
    王建芳, 高山, 牟德华. 基于主成分分析和聚类分析的不同品种燕麦品质评价[J]. 食品工业科技, 2020, 41(13):85−91

    WANG J F, GAO S, MOU D H, Quality evaluation of different varieties of oat based on principal components analysis and cluster analysis [J]. Science and Technology of Food Industry, 2020, 41(13):85−91.
    [38]
    雷月, 宫彦龙, 唐会会, 等. 基于主成分和聚类分析的不同品种贵州禾酿酒适宜性品质评价[J]. 食品工业科技,2023,44(8):289−300

    LEI Y, GONG Y L, TANG H H, et al. Evaluation of brewing suitability quality of Guizhou He varieties based on principal component analysis and cluster analysis[J]. Science and Technology of Food Industry,2023,44(8):289−300.
    [39]
    颜孙安, 史梦竹, 林香信, 等. 基于主成分与聚类分析不同品种鲜食葡萄的氨基酸品质评价[J]. 食品工业科技,2022,43(6):372−379

    YAN S A, SHI M H, LIN X X, et al. Principal component analysis and cluster analysis for evaluating amino acid of different table grapes ( Vitis vinifera L.) varieties[J]. Science and Technology of Food Industry,2022,43(6):372−379.
  • Related Articles

    [1]ZHANG Hongjian, LIU Shuaiguang, MA Zewei, WANG Qingsong, TIAN Yan, ZHENG Lianhe. Analysis of Phenolic Substances in Citrus microcarpa with Nature Fermentation and Evaluation of Its Inhibitory Activites on Digestion-related Enzymes[J]. Science and Technology of Food Industry, 2024, 45(9): 1-10. DOI: 10.13386/j.issn1002-0306.2023070026
    [2]HAN Xiaoyun, TAO Yuting, ZHAN Jiaying, LI Junhong, DU Baochang, CHEN Jing, SUN Qingshen. Analysis of Phenolic Composition Changes and Antioxidant Activity of Mulberry before and after Fermentation[J]. Science and Technology of Food Industry, 2024, 45(2): 280-288. DOI: 10.13386/j.issn1002-0306.2023040005
    [3]YANG Yang, FAN Bei, LI Yang, TONG Litao, BAO Qijun, WANG Lili, LIU Liya, SUN Jing, WANG Fengzhong. Influence of Different Processing Methods on Phenols in Hulless Barley[J]. Science and Technology of Food Industry, 2023, 44(1): 11-18. DOI: 10.13386/j.issn1002-0306.2022060106
    [4]ZHU He, YANG Tao, HAO Zhe-bing, YAO Peng, WU Jian, LAN Cai-hong, LIU Sheng-gang, WU Xiao-xia. Effect of Phenols on Liquor Flavor and Control Strategy of Phenols in Baijiu[J]. Science and Technology of Food Industry, 2019, 40(18): 361-367. DOI: 10.13386/j.issn1002-0306.2019.18.057
    [5]HE Jie, LAO Shui-bing, LIN Bo, ZHENG Feng-jin, CHEN Gan-lin. Simultaneous determination of 11 phenolic compounds in apple vinegar and sugarcane vinegar by HPLC-DAD[J]. Science and Technology of Food Industry, 2017, (23): 210-213. DOI: 10.13386/j.issn1002-0306.2017.23.039
    [6]CHEN Chen, LIU Shu-xun, WANG Shao-yang, LIU Ya-ran, LI Si-yu, ZHANG Bo-lin, ZHU Bao-qing. Influence of different conditions on the color and phenolics contents of blueberry wines stored in PET bottle storage[J]. Science and Technology of Food Industry, 2017, (01): 322-327. DOI: 10.13386/j.issn1002-0306.2017.01.057
    [7]CHEN Min-er. Determination of phenols in water samples using simultaneous derivatization and dispersive liquid- liquid microextraction followed by gas chromatography[J]. Science and Technology of Food Industry, 2016, (15): 300-303. DOI: 10.13386/j.issn1002-0306.2016.15.049
    [8]WANG Li-wei, JIN Jia-hui, YU Jin, CUI Guo-qiang, GUO Xiao-yan. Effect of drying method on antioxidant activity of phenolic compounds from Lentinus edodes( Berk.) sing.[J]. Science and Technology of Food Industry, 2015, (09): 132-135. DOI: 10.13386/j.issn1002-0306.2015.09.020
    [9]FU Xiao-yan, SUI Yong, XIE Bi-jun, SUN Zhi-da. Comparison of content, composition and antioxidant activity of germinated oat phenols by different extraction methods[J]. Science and Technology of Food Industry, 2014, (15): 54-57. DOI: 10.13386/j.issn1002-0306.2014.15.002
    [10]FU Xiao-yan, SUI Yong, XIE Bi-jun, SUN Zhi-da. Purification of oat phenols, distribution of phenolic compounds and antioxidant activity of different fractions separated from germinated oat[J]. Science and Technology of Food Industry, 2014, (08): 83-87. DOI: 10.13386/j.issn1002-0306.2014.08.009
  • Cited by

    Periodical cited type(7)

    1. 丁强,吴嬗嬗,耿璐娜,张越,王妍妍,陈卫东. 茯苓微粉的粉体特征、多糖含量及抗氧化性研究. 食品工业. 2023(02): 141-145 .
    2. 蒋文,罗真春. 针灸联合补中益气汤治疗肠内营养不耐受并发ICU获得性衰弱临床观察. 中华中医药学刊. 2023(06): 195-200 .
    3. 王小建,李果,孙秋枝,曾晓. 茯苓多糖对仔猪生长性能、养分表观消化率及免疫功能的影响. 中国饲料. 2023(18): 37-40 .
    4. 朱兆晗,刘希望,杨亚军,白莉霞,秦哲,李世宏,李准,李剑勇,葛闻博. 人工胃/肠液和大鼠肠道菌群对氟苯尼考磺胺噻唑稳定性的影响. 动物医学进展. 2023(12): 76-81 .
    5. 浦雪梅,李雪,何旭东,何金彪,刘志博,徐丹,陈晓娇,张范,俞捷. 药食同源大品种茯苓中多糖与三萜研究进展. 世界科学技术-中医药现代化. 2023(07): 2561-2573 .
    6. 冯晋,孙航,徐娅玲,杨琼英,何芳雁. 天麻成分对羟基苯甲醛的大鼠胃肠吸收特征研究. 中药药理与临床. 2021(02): 23-28 .
    7. 冯彩玲,程明翠,吴岩斌,吴锦忠,吴建国. 模拟胃液条件下广叶绣球菌多糖抗氧化及对血管紧张素Ⅰ转化酶抑制活性. 食用菌学报. 2021(06): 117-125 .

    Other cited types(7)

Catalog

    Article Metrics

    Article views (99) PDF downloads (7) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return