Citation: | LIU Shifeng, DONG Wenjing, YANG Lan, et al. Improvement and Mechanism of Ganoderma lucidum Polysaccharides and Its Flora Metabolites on Insulin Resistance in HepG2 Cells[J]. Science and Technology of Food Industry, 2023, 44(23): 314−321. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023020035. |
[1] |
KUMAR P S, NARESH R, SHUSHIL U, et al. Status of diabetes control and knowledge about diabetes in patients[J]. Endocrinologia, Diabetes & Nutricion, 2021, 68(10):716−727.
|
[2] |
韩旭. 2型糖尿病中医药治疗与管理方法探索[D]. 北京:北京中医药大学, 2020. [HAN X. Exploration of TCM treatment and management methods for type 2 diabetes[D]. Beijing:Beijing University of Chinese Medicine, 2020.
HAN X. Exploration of TCM treatment and management methods for type 2 diabetes[D]. Beijing: Beijing University of Chinese Medicine, 2020.
|
[3] |
WANG F, ZHENG R Z, LI L, et al. Novel subgroups and chronic complications of diabetes in middle-aged and elderly Chinese:A prospective cohort study[J]. Frontiers in Endocrinology,2022,12:802114. doi: 10.3389/fendo.2021.802114
|
[4] |
MEDINA-CHÁVEZ J H, VÁZQUEZ-PARRODI M, SANTOYO-GÓMEZ D L, et al. Integrated care protocol:Chronic complications of diabetes mellitus 2 [J]. Revista Medica del Instituto Mexicano del Seguro Social, 2022, 60(Supl 1):S19−S33.
|
[5] |
周琼, 彭葆坤, 周松兰, 等. 初诊断早发2型糖尿病患者胰岛素抵抗及胰岛 β细胞功能分析[J]. 重庆医学,2022,51(6):945−948. [ZHOU Q, PENG B S, ZHOU S L, et al. Analysis of insulin resistance and pancreatic β-cell function in patients with newly diagnosed early-onset type 2 diabetes mellitus[J]. Chongqing Medicine,2022,51(6):945−948. doi: 10.3969/j.issn.1671-8348.2022.06.009
|
[6] |
ZHAO X, CHEN Z, ZHOU Z Y, et al. High-throughput sequencing of small RNAs and analysis of differentially expressed microRNAs associated with high-fat diet-induced hepatic insulin resistance in mice[J]. Genes and Nutrition,2019,14:6. doi: 10.1186/s12263-019-0630-1
|
[7] |
WATT M J, MIOTTO P M, DE N W, et al. The liver as an endocrine organ-linking NAFLD and insulin resistance[J]. Endocrine Reviews,2019,40(5):1367−1393. doi: 10.1210/er.2019-00034
|
[8] |
MALIK S A, ACHARYA J D, MEHENDALE N K, et al. Pterostilbene reverses palmitic acid-mediated insulin resistance in HepG2 cells by reducing oxidative stress and triglyceride accumulation[J]. Free Radical Research,2019,53(7):815−827. doi: 10.1080/10715762.2019.1635252
|
[9] |
XIAO C, WU Q P, ZHANG J M, et al. Antidiabetic activity of Ganoderma lucidum polysaccharides F31 down-regulated hepatic glucose regulatory enzymes in diabetic mice[J]. Ethnopharmacol,2017,196:47−57.
|
[10] |
GASTALDELLI A, STEFAN N, HÄRING H U. Liver-targeting drugs and their effect on blood glucose and hepatic lipids[J]. Diabetologia,2021,64(7):1461−1479. doi: 10.1007/s00125-021-05442-2
|
[11] |
RINES A K, SHARABI K, TAVARES C D J, et al. Targeting hepatic glucose metabolism in the treatment of type 2 diabetes[J]. Nature Reviews Drug Discovery,2016,15(11):786−804. doi: 10.1038/nrd.2016.151
|
[12] |
SHARABI K, LIN H, TAVARES C D J, et al. Selective chemical inhibition of PGC-1α gluconeogenic activity ameliorates type 2 diabetes[J]. Cell, 2017, 169(1):148−160.e15.
|
[13] |
马传贵, 张志秀, 闫梅霞, 等. 灵芝的活性成分及其抗肿瘤研究进展[J]. 食药用菌,2022,30(2):114−118. [MA C G, ZHANG Z X, YAN M X, et al. Research status of bio-active components and anti-tumor of Ganoderma lucidum[J]. Edible and Medicinal Mushrooms,2022,30(2):114−118.
|
[14] |
ZHU K X, NIE S P, LI C, et al. A newly identified polysaccharide from Ganoderma atrum attenuates hyperglycemia and hyperlipidemia[J]. International Journal of Biological Macromolecules,2013,57:142−150. doi: 10.1016/j.ijbiomac.2013.03.009
|
[15] |
陈嘉骏, 王颖, 桑婷婷, 等. 灵芝多糖在糖尿病及其并发症防治中的研究进展[J]. 中草药,2022,53(3):937−947. [CHEN J J, WANG Y, SANG T T, et al. Research progress on Ganoderma polysaccharide in prevention and treatment of diabetes and its complications[J]. Chinese Traditional and Herbal Drugs,2022,53(3):937−947.
|
[16] |
ZHENG J S, YANG B, YU Y H, et al. Ganoderma lucidum polysaccharides exert anti-hyperglycemic effect on streptozotocin-induced diabetic rats through affecting β-cells[J]. Comb Chem High Throughput Screen,2012,15(7):542−550. doi: 10.2174/138620712801619168
|
[17] |
杨扬. 猴头菌多糖的结构分析及其改善肠道菌群和免疫调节活性的机制研究 [D]. 长春:吉林大学, 2021. [YANG Y. Study on structural characterization of Hericium erinaceus polysaccharides and improving intestinal bacteria and their mechanisms of immunomodulatory activity[D]. Changchun: Jilin University, 2021.
YANG Y. Study on structural characterization of Hericium erinaceus polysaccharides and improving intestinal bacteria and their mechanisms of immunomodulatory activity[D]. Changchun: Jilin University, 2021.
|
[18] |
YANG L, KANG X C, DONG W J, et al. Prebiotic properties of Ganoderma lucidum polysaccharides with special enrichment of Bacteroides ovatus and B. uniformis in vitro[J]. Journal of Functional Foods,2022,92:105069. doi: 10.1016/j.jff.2022.105069
|
[19] |
SHAO W M, XIAO C, YONG T Q, et al. A polysaccharide isolated from Ganoderma lucidum ameliorates hyperglycemia through modulating gut microbiota in type 2 diabetic mice[J]. International Journal of Biological Macromolecules,2021,197:23−38.
|
[20] |
GUO C L, GUO D D, FANG L, et al. Ganoderma lucidum polysaccharide modulates gut microbiota and immune cell function to inhibit inflammation and tumorigenesis in colon[J]. Carbohydrate Polymers,2021,267:118231. doi: 10.1016/j.carbpol.2021.118231
|
[21] |
LIU Y T, LI Y W, KE Y, et al. In vitro saliva-gastrointestinal digestion and fecal fermentation of Oudemansiella radicata polysaccharides reveal its digestion profile and effect on the modulation of the gut microbiota[J]. Carbohydrate Polymers,2021,251:117041. doi: 10.1016/j.carbpol.2020.117041
|
[22] |
丁翘. 基于肠道菌群探讨黑灵芝多糖对2型糖尿病大鼠的影响机制[D]. 南昌:南昌大学, 2020. [DING Q. The mechanism of polysaccharides from Ganoderma Atrum on type 2 diabetic rats through gut microbiota[D]. Nanchang:Nanchang University, 2020.
DING Q. The mechanism of polysaccharides from Ganoderma Atrum on type 2 diabetic rats through gut microbiota[D]. Nanchang: Nanchang University, 2020.
|
[23] |
张冠亚. 铁皮石斛多糖在模拟消化、酵解体系中的代谢特点及其改善肠道功能的研究[D]. 南昌:南昌大学, 2015. [ZHANG G Y. Research on metabolic characteristics of Dendrobium officinale polysaccharides in simulating digestion and fermentation system and its effect on the improvement of intestinal function[D]. Nanchang:Nanchang University, 2015.
ZHANG G Y. Research on metabolic characteristics of Dendrobium officinale polysaccharides in simulating digestion and fermentation system and its effect on the improvement of intestinal function[D]. Nanchang: Nanchang University, 2015.
|
[24] |
LIN X H, XU W Y, LIU L, et al. In vitro fermentation of flaxseed polysaccharide by fecal bacteria inhibits energy intake and adipogenesis at physiological concentration[J]. Food Research International,2021,139:109920. doi: 10.1016/j.foodres.2020.109920
|
[25] |
ZAVŘEL T, OČENÁŠOVÁ P, SINETOVA M A, et al. Determination of storage (starch/glycogen) and total saccharides content in algae and cyanobacteria by a phenol-sulfuric acid method [J]. Bio-Protocol, 2018, 8(15):e2966.
|
[26] |
高文军, 李卫红, 王喜明, 等. 3, 5-二硝基水杨酸法测定蔓菁中还原糖和总糖含量[J]. 中国药业,2020,29(9):113−116. [GAO W J, LI W H, WANG X M, et al. Determination of reducing sugar and total sugar in turnip by 3, 5-dinitro salicylic acid colorimetry[J]. China Pharmaceuticals,2020,29(9):113−116.
|
[27] |
宋福江, 王玉乐. 紫外分光光度法测定灵芝孢子油中总三萜含量[J]. 中国医药导刊,2017,19(9):940−942. [SONG F J, WANG Y L. Determination of total triterpenoids in Ganoderma lucidum spores oil by ultraviolet spectrophotometry[J]. Chinese Journal of Medicinal Guide,2017,19(9):940−942. doi: 10.3969/j.issn.1009-0959.2017.09.020
|
[28] |
贺建华, 鹿麟, 邵纯君, 等. 福林酚法与考马斯亮蓝法测定甘露聚糖肽口服溶液中蛋白质含量的比较[J]. 中国药师,2017,20(10):1861−1863. [HE J H, LU L, SHAO C J, et al. Comparison of protein content determination respectively by Folin-Ciocalteu method and coomassie brilliant blue binding method for mannatide oral solution[J]. China Pharmacist,2017,20(10):1861−1863. doi: 10.3969/j.issn.1008-049X.2017.10.044
|
[29] |
DING Y T, XIA S J, FANG H W, et al. Loureirin B attenuates insulin resistance in HepG2 cells by regulating gluconeogenesis signaling pathway[J]. European Journal of Pharmacology,2021,910:174481. doi: 10.1016/j.ejphar.2021.174481
|
[30] |
ZHANG Q, WEI L, YANG H C, et al. Bromodomain-containing protein represses the Ras/Raf/MEK/ERK pathway to attenuate human hepatoma cell proliferation during HCV infection[J]. Cancer Letters,2016,371(1):107−116. doi: 10.1016/j.canlet.2015.11.027
|
[31] |
LAN T X, MEI M X, XIAO Q X, et al. Alizarin increases glucose uptake through PI3K/Akt signaling and improve alloxan-induced diabetic mice[J]. Future Medicinal Chemistry,2019,11(5):395−406. doi: 10.4155/fmc-2018-0515
|
[32] |
ZHOU Q L, YANG C X, LIANG H, et al. Propofol reduces MMPs expression by inhibiting PI3K/AKT activity in human HepG2 cells[J]. Biomedicine & Pharmacotherapy, 2013.
|
[33] |
HAN H S, KANG G, KIM J S, et al. Regulation of glucose metabolism from a liver-centric perspective[J]. Experimental and Molecular Medicine,2016,48(3):e218. doi: 10.1038/emm.2015.122
|
[34] |
YANG R Y, WANG L, XIE J, et al. Treatment of type 2 diabetes mellitus via reversing insulin resistance and regulating lipid homeostasis in vitro and in vivo using cajanonic acid A[J]. International Journal of Molecular Medicine,2018,42(5):2329−2342.
|
[35] |
CHENG F, HAN L, XIAO Y, et al. D-Dhiro-inositol ameliorates high fat diet-induced hepatic steatosis and insulin resistance via PKC ε-PI3K/AKT pathway[J]. Journal of Agricultural and Food Chemistry,2019,67(21):5957−5967. doi: 10.1021/acs.jafc.9b01253
|
[36] |
SHAO W M, XIAO C, YONG T Q, et al. A polysaccharide isolated from Ganoderma lucidum ameliorates hyperglycemia through modulating gut microbiota in type 2 diabetic mice[J]. International Journal of Biological Macromolecules,2022,197:23−38. doi: 10.1016/j.ijbiomac.2021.12.034
|
[37] |
HOLMES D. Obesity:Medicinal mushroom reduces obesity by modulating microbiota[J]. Nature Reviews Endocrinology,2015,11(9):504.
|
[38] |
GAO Y Y, GUO Q B, ZHANG K L, et al. Polysaccharide from Pleurotus nebrodensis:Physicochemical, structural characterization and in vitro fermentation characteristics[J]. Int J Biol Macromol, 2020, 165(Pt B):1960−1969.
|
[39] |
邓邦利. 钙信号和短链脂肪酸调节糖代谢机制研究[D]. 天津:天津医科大学, 2018. [DENG B L. Study the mechanism of calcium signal and short chain fatty acids-regulated glucose metabolism[D]. Tianjin:Tianjin Medical University, 2018.
DENG B L. Study the mechanism of calcium signal and short chain fatty acids-regulated glucose metabolism[D]. Tianjin: Tianjin Medical University, 2018.
|
[40] |
ROPELLE E R, PAULI J R, FERNANDES M F A, et al. A central role for neuronal AMP-activated protein kinase (AMPK) and mammalian target of rapamycin (mTOR) in high-protein diet-induced weight loss[J]. Diabetes,2008,57:594−605. doi: 10.2337/db07-0573
|
[41] |
SAKAKIBARA S, YAMAUCHI T, OSHIMA Y, et al. Acetic acid activates hepatic AMPK and reduces hyperglycemia in diabetic KK-A(y) mice[J]. Biochemical and Biophysical Research Communications,2006,344(2):597−604. doi: 10.1016/j.bbrc.2006.03.176
|
[42] |
KONDO T, KOSHI M, FUSHIMI T, et al. Acetic acid upregulates the expression of genes for fatty acid oxidation enzymes in liver to suppress body fat accumulation[J]. Journal of Agricultural and Food Chemistry,2009,57(13):5982−5986. doi: 10.1021/jf900470c
|
[43] |
DEN BESTEN G, BLEEKER A, GERDING A, et al. Short-chain fatty acids protect against high-fat diet-induced obesity via a PPAR γ-dependent switch from lipogenesis to fat oxidation[J]. Diabetes,2015,64(7):2398−2408. doi: 10.2337/db14-1213
|
[44] |
ENDO H, NIIOKA M, KOBAYASHI N, et al. Butyrate-producing probiotics reduce nonalcoholic fatty liver disease progression in rats:New insight into the probiotics for the gut-liver axis[J]. PLoS One,2013,8(5):e63388. doi: 10.1371/journal.pone.0063388
|
[45] |
LIU Y P, LI Y M, ZHANG W L Z, et al. Hypoglycemic effect of inulin combined with Ganoderma lucidum polysaccharides in T2DM rats[J]. Journal of Functional Foods,2019,55:381−390. doi: 10.1016/j.jff.2019.02.036
|
[46] |
XIAO C, WU Q P, XIE Y Z, et al. Hypoglycemic mechanisms of Ganoderma lucidum polysaccharides F31 in db/db mice via RNA-seq and iTRAQ[J]. Food & Function,2018,9(12):6495−6507. doi: 10.1039/C8FO01656A
|