WANG Ruixue, ZHANG Yun, CUI Yanwei, et al. Analysis of Polyphenols from Lemon Peel and Its Effect on Glucose Metabolism in Insulin-resistant HepG2 Cells[J]. Science and Technology of Food Industry, 2022, 43(23): 310−317. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022030281.
Citation: WANG Ruixue, ZHANG Yun, CUI Yanwei, et al. Analysis of Polyphenols from Lemon Peel and Its Effect on Glucose Metabolism in Insulin-resistant HepG2 Cells[J]. Science and Technology of Food Industry, 2022, 43(23): 310−317. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022030281.

Analysis of Polyphenols from Lemon Peel and Its Effect on Glucose Metabolism in Insulin-resistant HepG2 Cells

More Information
  • Received Date: March 22, 2022
  • Available Online: October 05, 2022
  • Objective: To explore the composition of limon peel polyphenols (LPP) and its influence on glucose metabolism in insulin resistance (IR) HepG2 cells. Methods: The composition of LPP was analyzed by HPLC-QTOF-MS. HepG2 cells were used to establish insulin resistance model, IR-HepG2 cells were treated with LPP, and the effect of LPP on glucose metabolism was preliminarily investigated by measuring glucose consumption. By determining glycogen content and hexokinase (HK), pyruvate kinase (PK), phosphoenol pyruvate carboxykinase (PEPCK) and glucose-6-phosphatase (G6Pase) activities to explore the pathway of LPP regulating glucose metabolism in cells. Results: Twelve compounds were identified by HPLC-QTOF-MS, mainly flavonoids and their glycosides. In the study of glucose metabolism, compared with the model group, the concentration of 0.1~2 mg/mL lemon peel polyphenols significantly increased glucose consumption (P<0.05), and the ability to increase the glycogen content and HK and PK activities and decrease the PEPCK and G6Pase activity of IR-HepG2 cells was closest to metformin-positive control when the concentration of lemon peel polyphenols was 0.5 mg/mL. Conclusion: Lemon peel polyphenols can reduce IR-HepG2 cell state of insulin resistance, and can promote glycogen synthesis, improve the glycolytic key enzyme activity, reduce sugar dysplasia regulate sugar metabolism enzyme activity way, it provides data support for the subsequent research in the body, and provides the theoretical basis for the future development of functional products.
  • [1]
    YUAN M, GAO W N, YU Y J, et al. Research progress of quercetin in prevention and treatment of type 2 diabetes mellitus[J]. Journal of nutrition,2020,42(6):618−622.
    [2]
    爱伟, 刘莉莉, 杨亚晋, 等. 植物多酚的生物活性及其在家禽生产中的应用[J]. 动物营养学报,2019,31(2):491−499. [AI Wei, LIU Lili, YANG Yajin, et al. Bioactivity of plant polyphenols and their application in poultry production[J]. Chinese Journal of Animal Nutrition,2019,31(2):491−499. doi: 10.3969/j.issn.1006-267x.2019.02.001
    [3]
    李晓东. 榛子果仁中酚类物质的制备及其抗氧化、抗菌活性的研究[D]. 长春: 长春理工大学, 2019

    LI Xiaodong. Preparation of phenols from hazelnut kernels and their antioxidant and antibacterial activities[D]. Changchun: Changchun University of Science and Technology, 2018.
    [4]
    ZHANG Y, LI A, YANG X. Effect of lemon seed flavonoids on the anti-fatigue and antioxidant effects of exhausted running exercise mice[J]. Journal of Food Biochemistry,2021,45(8):157−163.
    [5]
    TINH N, SITOLO G C, YAMAMOTO Y, et al. Citrus limon peel powder reduces intestinal barrier defects and inflammation in a colitic murine experimental model[J]. Journal of Food Bioche-mistry,2021,183(24):1147−1156.
    [6]
    DONG L, XIN S. Induction of apoptosis by D-limonene is mediated by inactivation of Akt in LS174T human colon cancer cells[J]. Oncology Reports,2013,121(3):177−184.
    [7]
    TEJPAL S, WEMYSS A M, BASTIE C C, et al. Lemon extract reduces angiotensin converting enzyme (ACE) expression and activity and increases insulin sensitivity and lipolysis in mouse adipocytes[J]. Nutrients,2020,12(8):23−48.
    [8]
    张放. 2010—2020年全球柑桔生产变化简析[J]. 中国果业信息,2022,39(1):26−43. [ZHANG Fang. Changes of global citrus production from 2010 to 2020[J]. China Fruit News,2022,39(1):26−43. doi: 10.3969/j.issn.1673-1514.2022.01.005
    [9]
    容欧, 刘珊. 柠檬精深加工研究现状[J]. 现代食品,2019(4):5−7, 11. [RONG Ou, LIU Shan. Research status of lemon intensive and deep processing[J]. Modern Food,2019(4):5−7, 11. doi: 10.16736/j.cnki.cn41-1434/ts.2019.04.002
    [10]
    SIMEONE G, MATTEO A D, RAO M A, et al. Variations of peel essential oils during fruit ripening in four lemon (Citrus limon (L.) Burm. F.) cultivars[J]. Journal of the Science of Food and Agriculture,2020,100(1):193−200. doi: 10.1002/jsfa.10016
    [11]
    黄修晴. 柠檬皮多酚生物活性及其对肠道菌群的影响[D]. 哈尔滨: 黑龙江东方学院, 2021

    HUANG Xiuqing. Bioactivity of polyphenols from lemon peel and its effect on intestinal microflora[D]. Harbin: East University of Heilongjiang, 2021.
    [12]
    高亚东, 朱安, 李璐迪, 等. 吴茱萸碱对HepG2细胞毒性及其机制[J]. 北京大学学报(医学版),2021,53(6):1107−1114. [GAO Yadong, ZHU An, LI Ludi, et al. Cytotoxicity and underlying mechanism of evodiamine in HepG2 cells[J]. Journal of Peking University (Health Sciences),2021,53(6):1107−1114. doi: 10.19723/j.issn.1671-167X.2021.06.017
    [13]
    LI J, LUO J, CHAI Y, et al. Hypoglycemic effect of Taraxacum officinale root extract and its synergism with Radix astragali extract[J]. Food Science Natural,2021,26;9(4):2075−2085.
    [14]
    BIAN G, YANG J, ELANGO J, et al. Natural triterpenoids isolated from Akebia trifoliata stem explants exert a hypoglycemic effect via α-glucosidase inhibition and glucose uptake stimulation in insulin-resistant HepG2 cells[J]. Chemical Biodivers,2021,18(5):1178−1187.
    [15]
    王梦丽. 鸡树条荚蒾果中降血糖成分的提取及其活性研究[D]. 哈尔滨: 东北林业大学, 2020

    WANG Mengli. Study on extraction and activity of hypoglycemic components from Viburnum burnum fruit[D]. Harbin: Northeast Forestry University, 2020.
    [16]
    GHASEMI M, TURNBULL T, SEBASTIAN S, et al. The MTT assay: Utility, limitations, pitfalls, and interpretation in bulk and single-cell analysis[J]. International Journal of Molecular Sciences,2021,22(23):12−17.
    [17]
    于国华, 杨洪军, 李俊芳, 等. 基于UHPLC-LTQ-Orbitrap-MS/MS技术分析枳实中的化学成分[J]. 中国中药杂志,2016,41(18):3371−3378. [YU Guohua, YANG Hongjun, LI Junfang, et al. UHPLC-LTQ-Orbitrap-MS/MS was used to analyze the chemical constituents of Aurantii trifoliata[J]. China Journal of Chinese Materia Medica,2016,41(18):3371−3378.
    [18]
    陈金梅, 廖锦红, 高金薇, 等. UPLC-Q-TOF-MS/MS研究胆木药材水提物的化学成分[J]. 中国实验方剂学杂志,2018,24(18):49−56. [CHEN Jinmei, LIAO Jinhong, GAO Jinwei, et al. UPLC-Q-TOF-MS/MS was used to study the chemical constituents of the water extract of Gallwood[J]. Chinese Journal of Experimental Formulae,2018,24(18):49−56. doi: 10.13422/j.cnki.syfjx.20181517
    [19]
    何峰, 王永林, 郑林, 等. UPLC-PDA-ESI-MS分析杜仲中化学成分[J]. 中国实验方剂学杂志,2014,20(3):59−62. [HE Feng, WANG Yonglin, ZHENG Lin, et al. Analysis of chemical constituents in Eucommia ulmoides by UPLC-PDA-ESI-MS[J]. Chinese Journal of Experimental Formulae,2014,20(3):59−62.
    [20]
    石芳, 廖霞, 卢可可, 等. UPLC-DAD/ESI-TOF-MS鉴定黑脉羊肚菌多酚化合物[J]. 食品科学,2017,38(16):115−121. [SHI Fang, LIAO Xia, LU Keke, et al. Identification of polyphenol compounds in Morchella nigricae by UPLC-DAD/ESI-TOF-MS[J]. Food Science,2017,38(16):115−121. doi: 10.7506/spkx1002-6630-201716018
    [21]
    郑亚美. 侧柏叶多酚的分离纯化、结构鉴定及相关活性研究[D]. 广州: 华南理工大学, 2017

    ZHENG Yamei. Isolation, purification, structure identification and related activities of polyphenols from the leaves of Platycladus orientalis[D]. Guangzhou: South China University of Technology, 2017.
    [22]
    李汀, 邹波, 吴继军, 等. 蜜柚果肉膳食多酚的结构鉴定及抗氧化机理[J]. 食品科学,2021,42(19):202−210. [LI Ting, ZOU Bo, WU Jijun, et al. Structural identification and antioxidant mechanism of dietary polyphenols in Pomelo pulp[J]. Food Science,2021,42(19):202−210. doi: 10.7506/spkx1002-6630-20201124-238
    [23]
    李哲, 宋瑞, 许风国, 等. 大鼠灌服枳实提取液后体内黄酮类代谢产物的LC-MS/MS分析[J]. 中国药科大学学报,2010,41(6):539−547. [LI Zhe, SONG Rui, XU Fengguo, et al. LC-MS/MS analysis of flavonoid metabolites in rats after gavage of Immaturus aurantii extract[J]. Journal of China Pharmaceutical University,2010,41(6):539−547. doi: 10.11665/j.issn.1000-5048.20100612
    [24]
    孟鹏. 金柑柠檬苦素类化合物的提取纯化、结构鉴定及生物活性研究[D]. 福州: 福建农林大学, 2013

    MENG Peng. Extraction, purification, structure identification and biological activity of limonin compounds from kumquat[D]. Fuzhou: Fujian Agriculture and Forestry University, 2013.
    [25]
    陈欢, 张铭珈, 倪慧, 等. 应激损伤糖尿病细胞模型的建立及不同浓度逍遥散含药血清对其生存率的影响[J]. 时珍国医国药,2019,30(1):26−29. [CHEN Huan, ZHANG Minjia, NI Hui, et al. The establishment of diabetic cell model with stress injury and the effect of different concentrations of Xiao Yao San-containing serum on survival rate[J]. Lishizhen Medicine and Materia Medica Research,2019,30(1):26−29.
    [26]
    魏奇. 姬松茸多酚降血糖活性及其作用机制的研究[D]. 福州: 福建农林大学, 2020

    WEI Qi. Hypoglycemic activity of polyphenols in Agaricus blazei and its mechanism[D]. Fuzhou: Fujian Agriculture and Forestry University, 2020.
    [27]
    盛瑜, 白丽丹, 段懿涵, 等. 北虫草刺五加组合物抗疲劳活性及机理研究[J]. 食品研究与开发,2020,41(20):15−21. [SHENG Yu, BAI Lidan, DUAN Yihan, et al. Study on antifatigue activity and mechanism of Acanthopanax composition from Cordyceps sinensis[J]. Food Research and Development,2020,41(20):15−21. doi: 10.12161/j.issn.1005-6521.2020.20.003
    [28]
    KIM J J Y, TAN Y, XIAO L, et al. Green tea polyphenol epigallocatechin-3-gallate enhance glycogen synthesis and inhibit lipogenesis in hepatocytes[J]. BioMed Research International,2013,9(20):128−136.
    [29]
    MALGORZATA Z S, PAWLIK N. Japanese quince (Chaenomeles japonica L.) fruit polyphenolic extract modulates carbohydrate metabolism in HepG2 cells via AMP-activated protein kinase[J]. Acta Biochimica Polonica,2018,65(1):67−78. doi: 10.18388/abp.2017_1604
    [30]
    刘嘉婧, 刘荣花, 储以微. 免疫代谢研究进展[J]. 中国免疫学杂志,2017,33(1):148−151. [LIU Jiajing, LIU Ronghua, CHU Yiwei. Progress in immune metabolism research[J]. Chinese Journal of Immunology,2017,33(1):148−151. doi: 10.3969/j.issn.1000-484X.2017.01.032
    [31]
    符群, 王梦丽, 郐滨, 等. 鸡树条荚蒾果多酚改善胰岛素抵抗HepG2细胞的糖代谢效应[J]. 北京林业大学学报,2020,42(2):106−113. [FU Qun, WANG Mengli, KUAI Bin, et al. Effects of Viburnum fruit polyphenols on glucose metabolism in insulin-resistant HepG2 cells[J]. Journal of Beijing Forestry University,2020,42(2):106−113. doi: 10.12171/j.1000-1522.20190243
    [32]
    崔继雯. LAMTOR1通过LKB1/SIK途径调节糖异生[D]. 厦门: 厦门大学, 2018

    CUI Jiwen. LAMTOR1 regulates gluconeogenesis through the LKB1/SIK pathway[D]. Xiamen: Xiamen University, 2018.
    [33]
    ELUMALAI N. Hesperidin, a citrus flavonoid ameliorates hyperglycemia by regulating key enzymes of carbohydrate metabolism in streptozotocin-induced diabetic rats[J]. Toxicology Mechanisms and Methods,2019,29(1):1−32. doi: 10.1080/15376516.2018.1477897
    [34]
    JU J U, MI-KYUNG L, KYU-SHIK J, et al. The hypoglycemic effects of hesperidin and naringin are partly mediated by hepatic glucose-regulating enzymes in C57BL/KsJ-db/db mice[J]. Journal of Nutrition,2004,134(10):24−29.
  • Related Articles

    [1]GUO Aijing, HUA Zhongxia, XIN Jia, ZHANG Hong, ZHANG Shiyong, CAO Liling, WANG Ke. Determination of 8 Aniline Herbicides in Oil Crops by Ultra High Performance Liquid Chromatography-Tandem Mass Spectrometry[J]. Science and Technology of Food Industry, 2021, 42(2): 204-209. DOI: 10.13386/j.issn1002-0306.2020040145
    [2]ZHU Xu-ran, LIU Yuan, HAN Zheng-zheng, CHENG Ming, XING Wei-hai, ZHANG Jia-xiao, YANG Li-ting, WANG Jian, SHE Yong-xin. Determination of 10 Sulfonylurea Herbicides by High Performance Liquid Chromatography-Tandem Mass Spectrometric with Molecularly Imprinted Polymers Solid Phase Extraction Doped Metal Organic Frameworks[J]. Science and Technology of Food Industry, 2020, 41(2): 213-219,226. DOI: 10.13386/j.issn1002-0306.2020.02.034
    [3]XU Wei-li, MA Ming-yang, LI Shou-zhi, ZHAO Yang, FU Zhuang, WANG Zhi-bing. Matrix Solid Phase Dispersion Followed by Acetonitrile-salt Based Aqueous Two-phase Systems Coupled with High Performance Liquid Chromatography for Determination of Phenylurea Residues in Vegetables[J]. Science and Technology of Food Industry, 2019, 40(24): 205-212. DOI: 10.13386/j.issn1002-0306.2019.24.034
    [4]TANG Li-hua, MA Gui-juan, ZHU Jie, MA Xue-mei. Determination of 31 pesticide residues in Chinese wolfcherry by high performance liquid chromatography-tandem mass spectrometry[J]. Science and Technology of Food Industry, 2017, (14): 26-30. DOI: 10.13386/j.issn1002-0306.2017.14.006
    [5]LIU Hui-lin, MU Lin, CHEN Xiao-mo, WANG Jing. Determination of trace pyrraline in food samples using solidphase extraction and high performance liquid chromatography[J]. Science and Technology of Food Industry, 2016, (22): 90-93. DOI: 10.13386/j.issn1002-0306.2016.22.009
    [6]JIANG Nan, WANG Meng, WEI Di- zhe, FENG Xiao- yuan. Determination of polyphenols in cherry by high- performance liquid chromatography[J]. Science and Technology of Food Industry, 2016, (07): 288-292. DOI: 10.13386/j.issn1002-0306.2016.07.047
    [7]ZHU Hong- liang, GE Fang-fang, GUAN Jia-li. Determination of malondialdehyde in edible oils by high performance liquid chromatography[J]. Science and Technology of Food Industry, 2015, (01): 309-310. DOI: 10.13386/j.issn1002-0306.2015.01.056
    [8]LI Li-juan, WU Qing, WENG Rou-dan, WANG Xiu-zhen, WU Shi-yun. Simultaneous determination of 6 herbicides in vegetables, fruits and cereals by gas chromatography[J]. Science and Technology of Food Industry, 2014, (18): 84-88. DOI: 10.13386/j.issn1002-0306.2014.18.009
    [9]Determination of Benzo (a) pyrene in instant noodles by solid phase extraction-high performance liquid chromatography[J]. Science and Technology of Food Industry, 2013, (08): 65-67. DOI: 10.13386/j.issn1002-0306.2013.08.018
    [10]Determination of chlorimuron-ethyl residue in soybean by solid phase extraction-high performance liquid chromatography-mass spectrometry[J]. Science and Technology of Food Industry, 2012, (17): 291-294. DOI: 10.13386/j.issn1002-0306.2012.17.013
  • Cited by

    Periodical cited type(6)

    1. 王寿峰,兰茜,雍登金,杨惠妮,胡敏. 利用核磁氢谱定量白酒中的酸酯总量. 食品与发酵工业. 2025(06): 306-310 .
    2. 陶兰德,车富红,郭建慧,林有兰,王生库,孙海浪,冯声宝. 天佑德青稞酒中酸酯总量的测定及比对分析. 酿酒. 2023(04): 88-91 .
    3. 陈茂飞,焦富,袁进,李巧玉,聂叶,李代鑫. 酱香型白酒酒醅中近红外快速检测乳酸的模型构建. 酿酒科技. 2023(09): 75-80 .
    4. 宗绪岩,彭厚博,吴键航,盛旭峰,李丽. 化学计量学结合NIR对浓香型白酒年份、等级的研究. 包装与食品机械. 2022(02): 87-94 .
    5. 翟双,张贵宇,庹先国,朱雪梅,罗林. 近红外光谱结合二维卷积在白酒基酒判别中的应用. 食品科技. 2022(09): 250-256 .
    6. 宋艳,杨洋,张学平,许驰,王毓,蔡亮,李子文. 中红外光谱技术结合竞争性自适应重加权算法快速分析白酒风味组分. 中国酿造. 2022(12): 230-234 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (206) PDF downloads (34) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return