ZHONG Wanying, MIAO Jianyin, YE Haoduo, et al. Enzymatic Preparation of Quinoa Protein Peptides and Its Lipid-lowering and Uric Acid-Lowering Activity in Vitro[J]. Science and Technology of Food Industry, 2023, 44(23): 156−166. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023010046.
Citation: ZHONG Wanying, MIAO Jianyin, YE Haoduo, et al. Enzymatic Preparation of Quinoa Protein Peptides and Its Lipid-lowering and Uric Acid-Lowering Activity in Vitro[J]. Science and Technology of Food Industry, 2023, 44(23): 156−166. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023010046.

Enzymatic Preparation of Quinoa Protein Peptides and Its Lipid-lowering and Uric Acid-Lowering Activity in Vitro

More Information
  • Received Date: January 09, 2023
  • Available Online: September 24, 2023
  • To study the optimal enzymatic hydrolysis conditions and uric acid-lowering activity of lipid-lowering peptides from quinoa protein, this study used quinoa as raw material to extract protein, and used pancreatic lipase inhibition rate as the activity index. The enzymatic hydrolysis process of lipid-lowering peptides was optimized by single factor experiment and response surface analysis. The pancreatic lipase inhibitory activity, sodium taurocholate binding activity, cholesterol esterase inhibitory activity, xanthine oxidase inhibitory activity and amino acid composition of quinoa protein peptides were analyzed and characterized. The results showed that the optimal enzymatic hydrolysis conditions of lipid-lowering peptides from quinoa were as follows: pH1.6, enzymatic hydrolysis temperature 42.9 ℃, substrate concentration 3.03%, enzymatic hydrolysis time 1 h and enzyme to substrate ratio 0.2%. The theoretical value of inhibition rate of pancreatic lipase was 90.43%, and the actual value was 90.93%±0.10%. The optimal enzymatic hydrolysates showed excellent effect of lowering lipid in vitro. The IC50 of pancreatic lipase inhibition rate and cholesterol esterase inhibition rate were 7.49 μg/mL and 4.73 mg/mL, respectively. Meanwhile, the EC50 of taurocholic sodium binding rate was 0.53 mg/mL. In addition, the optimal enzymatic hydrolysates showed good xanthine oxidase inhibition effect (IC50=5.97 mg/mL), indicating that it had the uric acid-lowering effect in vitro. Amino acid analysis showed that quinoa protein peptides were rich in essential amino acids (34.23%), and the percentage of hydrophobic amino acid and acidic amino acid were 34.11% and 31.66%, respectively. The quinoa protein peptides had high lipid-lowering and uric acid-lowering activities in vitro, which provided a theoretical basis for the high-value application of quinoa protein peptides.
  • [1]
    LEE S, YOUN B. Hypolipidemic roles of casein-derived peptides by regulation of trans-intestinal cholesterol excretion and bile acid synthesis[J]. Nutrients,2020,12(10):3058. doi: 10.3390/nu12103058
    [2]
    CHAVOLLA O Y B, ANUAR K G, MONSERRATTE R R, et al. Familial combined hyperlipidemia:current knowledge, perspectives, and controversies[J]. Revista De Investigacion Clinica,2018,70(5):224−236.
    [3]
    PIRILLO A. Global epidemiology of dyslipidaemias[J]. Nature Reviews Cardiology,2021,18(10):689−700. doi: 10.1038/s41569-021-00541-4
    [4]
    TADDEI C, ZHOU B, BIXBY H, et al. Repositioning of the global epicentre of non-optimal cholesterol[J]. Nature,2020,582(7810):73−77. doi: 10.1038/s41586-020-2338-1
    [5]
    LIN P, SHEN N, YIN F, et al. Sea cucumber-derived compounds for treatment of dyslipidemia:A review[J]. Front Pharmacol,2022,13:1000315. doi: 10.3389/fphar.2022.1000315
    [6]
    钱雅雯, 魏佳, 张政, 等. 籽瓜多糖提取工艺的响应面优化及其体外降血脂活性[J]. 食品工业科技,2020,41(2):101−107. [QIAN Yawen, WEI Jia, ZHANG Zheng, et al. Optimization of polysaccharides extraction from seed melon by response surface methodology and its hypolipidemic effects in vitro[J]. Science and Technology of Food Industry,2020,41(2):101−107.

    QIAN Yawen, WEI Jia, ZHANG Zheng, et al. Optimization of polysaccharides extraction from seed melon by response surface methodology and its hypolipidemic effects in vitro[J]. Science and Technology of Food Industry, 2020, 412): 101107.
    [7]
    王凯. 美藤果粕多肽降血糖和降血脂活性研究[D]. 广州:华南理工大学, 2021. [WANG Kai. Hypoglycemic and hypolipidemic activity of peptides from the meal of Plukenetia volubilis L[D]. Guangzhou:South China University of Technology, 2021.

    WANG Kai. Hypoglycemic and hypolipidemic activity of peptides from the meal of Plukenetia volubilis L[D]. Guangzhou: South China University of Technology, 2021.
    [8]
    李珊, 刘耀耀, 刘哲, 等. 狭果茶藨子黄酮提取工艺优化及其体外降血脂活性[J]. 食品研究与开发,2021,42(3):73−79. [LI Shan, LIU Yaoyao, LIU Zhe, et al. Optimization of the extraction process of flavonoids from Ribes stenocarpum Maxim. and its hypolipidemic activity in vitro[J]. Food Research and Development,2021,42(3):73−79.

    LI Shan, LIU Yaoyao, LIU Zhe, et al. Optimization of the extraction process of flavonoids from Ribes stenocarpum Maxim. and its hypolipidemic activity in vitro[J]. Food Research and Development, 2021, 423): 7379.
    [9]
    郭剑霞, 张谨华, 潘玉峰, 等. 华山松籽油亚油酸的富集纯化及降血脂活性研究[J]. 中国油脂,2019,44(11):131−136. [GUO Jianxia, ZHANG Jinhua, PAN Yufeng, et al. Enrichment of linoleic acid from Pinus armandi Franch seed oil and its lipid-lowering activity[J]. China Oils and Fats,2019,44(11):131−136.

    GUO Jianxia, ZHANG Jinhua, PAN Yufeng, et al. Enrichment of linoleic acid from Pinus armandi Franch seed oil and its lipid-lowering activity[J]. China Oils and Fats, 2019, 4411): 131136.
    [10]
    黄尚林. 西藏黑木耳粗多糖降血脂活性的研究[D]. 林芝:西藏农牧学院, 2021. [HUANG Shanglin. Study on hypolipidemic activity of crude polysaccharide from Xizang Auricularia auriculata[D]. Linzhi:Agricultural and Animal Husbandry College of Tibet University, 2021.

    HUANG Shanglin. Study on hypolipidemic activity of crude polysaccharide from Xizang Auricularia auriculata[D]. Linzhi: Agricultural and Animal Husbandry College of Tibet University, 2021.
    [11]
    CHEN Q, WOOD C, GAGNON C, et al. The α′subunit of β-conglycinin and the A1–5 subunits of glycinin are not essential for many hypolipidemic actions of dietary soy proteins in rats[J]. European Journal of Nutrition,2014,53(5):1195−1207. doi: 10.1007/s00394-013-0620-9
    [12]
    BÄHR M, FECHNER A, KIEHNTOPF M, et al. Consuming a mixed diet enriched with lupin protein beneficially affects plasma lipids in hypercholesterolemic subjects:A randomized controlled trial[J]. Clinical Nutrition,2015,34(1):7−14. doi: 10.1016/j.clnu.2014.03.008
    [13]
    UDENIGWE C C, ROUVINEN-WATT K. The role of food peptides in lipid metabolism during dyslipidemia and associated health conditions[J]. International Journal of Molecular Sciences,2015,16(5):9303−9313.
    [14]
    ATEFI M, MIRZAMOHAMMADI S, DARAND M, et al. Meta-analysis of the effects of quinoa ( Chenopodium quinoa) interventions on blood lipids[J]. Journal of Herbal Medicine,2022,34:100571. doi: 10.1016/j.hermed.2022.100571
    [15]
    任贵兴, 杨修仕, 么杨. 中国藜麦产业现状[J]. 作物杂志,2015(5):1−5. [REN Guixing, YANG Xiushi, YAO Yang. Current situation of quinoa industry in China[J]. Crops,2015(5):1−5.

    REN Guixing, YANG Xiushi, YAO Yang. Current situation of quinoa industry in China[J]. Crops, 20155): 15.
    [16]
    VILCACUNDO R, HERNÁNDEZ-LEDESMA B. Nutritional and biological value of quinoa ( Chenopodium quinoa Willd.)[J]. Current Opinion in Food Science,2017,14:1−6.
    [17]
    和丽媛, 王玲, 吕俊梅. 藜麦营养组成及生物学功能研究进展[J]. 粮食与油脂,2022,35(4):11−15. [HE Liyuan, WANG Ling, LÜ Junmei. Research progress on nutritional composition and biological function of quinoa[J]. Cereals & Oils,2022,35(4):11−15.

    HE Liyuan, WANG Ling, LÜ Junmei. Research progress on nutritional composition and biological function of quinoa[J]. Cereals & Oils, 2022, 354): 1115.
    [18]
    FAN X, GUO H, TENG C, et al. Anti-colon cancer activity of novel peptides isolated from in vitro digestion of quinoa protein in Caco-2 cells[J]. Foods,2022,11(2):11020194.
    [19]
    YOU H, WU T, WANG W, et al. Preparation and identification of dipeptidyl peptidase IV inhibitory peptides from quinoa protein[J]. Food Research International,2022,156:111176. doi: 10.1016/j.foodres.2022.111176
    [20]
    GUO H, HAO Y, RICHEL A, et al. Antihypertensive effect of quinoa protein under simulated gastrointestinal digestion and peptide characterization[J]. Journal of the Science of Food and Agriculture,2020,100(15):5569−5576. doi: 10.1002/jsfa.10609
    [21]
    谷俊华, 邢晓轲. 不同酶对藜麦蛋白肽制备的影响及其抗氧化活性研究[J]. 中国食品添加剂,2022,33(1):69−74. [GU Junhua, XING Xiaoke. Study on the effect of different enzymes on preparation of quinoa protein peptides and their antioxidant activities[J]. China Food Additives,2022,33(1):69−74.

    GU Junhua, XING Xiaoke. Study on the effect of different enzymes on preparation of quinoa protein peptides and their antioxidant activities[J]. China Food Additives, 2022, 331): 6974.
    [22]
    李帅, 袁亚宏, 岳田利. 益生菌发酵藜麦制备ACE抑制肽[J]. 食品与机械,2022,38(8):14−21. [LI Shuai, YUAN Yahong, YUE Tianli. Study on the preparation of ACE inhibitory peptides by probiotic fermentation of quinoa[J]. Food & Machinery,2022,38(8):14−21.

    LI Shuai, YUAN Yahong, YUE Tianli. Study on the preparation of ACE inhibitory peptides by probiotic fermentation of quinoa[J]. Food & Machinery, 2022, 388): 1421.
    [23]
    NONGONIERMA A B, MAUX S L, DUBRULLE C, et al. Quinoa ( Chenopodium quinoa Willd.) protein hydrolysates with in vitro dipeptidyl peptidase IV (DPP-IV) inhibitory and antioxidant properties[J]. Journal of Cereal Science,2015,65:112−118. doi: 10.1016/j.jcs.2015.07.004
    [24]
    邵素娟, 丁方莉, 刘迪迪, 等. 食物蛋白源降血脂肽的研究进展[J]. 食品工业科技,2018,39(1):323−326,332. [SHAO Sujuan, DING Fangli, LIU Didi, et al. Research progress of hypolipidemic peptides in dietary proteins source[J]. Science and Technology of Food Industry,2018,39(1):323−326,332.

    SHAO Sujuan, DING Fangli, LIU Didi, et al. Research progress of hypolipidemic peptides in dietary proteins source[J]. Science and Technology of Food Industry, 2018, 391): 323326,332.
    [25]
    马超月. 燕麦多肽的制备及其降血脂和降血压效果研究[D]. 镇江:江苏大学, 2018. [MA Chaoyue. Study on the preparation of oat peptides and its hypolipidemic and anti-hypertensive effects[D]. Zhenjiang:Jiangsu University, 2018.

    MA Chaoyue. Study on the preparation of oat peptides and its hypolipidemic and anti-hypertensive effects[D]. Zhenjiang: Jiangsu University, 2018.
    [26]
    褚斌杰, 祁高富, 梁运祥. 大豆肽减肥降血脂作用的研究[J]. 食品科技,2011,36(11):65−68. [CHU Binjie, QI Gaofu, LIANG Yunxiang. The effects of soybean peptide on reducing obesity and blood lipids in rat[J]. Food Science and Technology,2011,36(11):65−68.

    CHU Binjie, QI Gaofu, LIANG Yunxiang. The effects of soybean peptide on reducing obesity and blood lipids in rat[J]. Food Science and Technology, 2011, 3611): 6568.
    [27]
    叶灏铎, 管晓盛, 马凤, 等. 英红九号茶蛋白降尿酸肽的酶解制备及不同分子量组分的活性对比[J]. 现代食品科技, 2022:1−10. [YE Haoduo, GUAN Xiaosheng, MA Feng, et al. Enzymatic preparation, amino acid composition and activity comparison of different molecular weight components of uric acid-lowering peptides from tea protein of Yinghong NO.9[J]. Modern Food Science and Technology, 2022:1−10.

    YE Haoduo, GUAN Xiaosheng, MA Feng, et al. Enzymatic preparation, amino acid composition and activity comparison of different molecular weight components of uric acid-lowering peptides from tea protein of Yinghong NO.9[J]. Modern Food Science and Technology, 2022: 1−10.
    [28]
    黎青勇. 核桃源降尿酸肽靶向抑制黄嘌呤氧化酶活性的构效机制研究[D]. 广州:华南理工大学, 2018. [LI Qingyong. Study on the structure-activity mechanism of targeting inhibition of xanthine oxidase by uric acid-loweringpeptides derived from walnut[D]. Guangzhou:South China University of Technology, 2018.

    LI Qingyong. Study on the structure-activity mechanism of targeting inhibition of xanthine oxidase by uric acid-loweringpeptides derived from walnut[D]. Guangzhou: South China University of Technology, 2018.
    [29]
    叶灏铎, 苗建银, 李龙星, 等. 勐库大叶茶蛋白降血脂肽的酶解制备及活性分析[J]. 食品工业科技,2022,43(9):212−221. [YE Haoduo, MIAO Jianyin, LI Longxing, et al. Preparation and activity of hypolipidemic peptides from Mengkudayecha protein by enzymatic hydrolysis[J]. Science and Technology of Food Industry,2022,43(9):212−221.

    YE Haoduo, MIAO Jianyin, LI Longxing, et al. Preparation and activity of hypolipidemic peptides from Mengkudayecha protein by enzymatic hydrolysis[J]. Science and Technology of Food Industry, 2022, 439): 212221.
    [30]
    杨丽娥, 胡雪华, 安渊, 等. 叶蛋白提取方法研究[J]. 上海交通大学学报(农业科学版),2003,21(A):66−70, 82. [YANG Lie, HU Xuehua, AN Yuan, et al. Study on the extraction method of leaf protein[J]. Journal of Shanghai Jiaotong University (Agricultural Science),2003,21(A):66−70, 82.

    YANG Lie, HU Xuehua, AN Yuan, et al. Study on the extraction method of leaf protein[J]. Journal of Shanghai Jiaotong University (Agricultural Science), 2003, 21A): 6670, 82.
    [31]
    中华人民共和国国家卫生和计划生育委员会, 国家食品药品监督管理总局. GB 5009.5-2016 食品安全国家标准 食品中蛋白质的测定[S]. 北京:中国标准出版社, 2016. [The State Health and Family Planning Commission of the People's Republic of China, the State Food and Drug Administration. GB 5009.5-2016 National standard for food safety. Determination of protein in food[S]. Beijing:Standards Press of China, 2016.

    The State Health and Family Planning Commission of the People's Republic of China, the State Food and Drug Administration. GB 5009.5-2016 National standard for food safety. Determination of protein in food[S]. Beijing: Standards Press of China, 2016.
    [32]
    万林. 首乌藤活性成分的提取及减肥降脂活性的研究[D]. 广州:华南理工大学, 2019. [WAN Lin. Study on extraction of active ingredients from Caulis Polygoni Multiflori and their weight loss and lipid-lowering activity[D]. Guangzhou:South China University of Technology, 2019.

    WAN Lin. Study on extraction of active ingredients from Caulis Polygoni Multiflori and their weight loss and lipid-lowering activity[D]. Guangzhou: South China University of Technology, 2019.
    [33]
    李成龙. 发酵酸肉降血脂肽的分离纯化、特性研究及其对血管内皮细胞的影响[D]. 重庆:西南大学, 2016. [LI Chenglong. Purification of blood lipid lowering peptides from fermented sour meat and studing of physicochemical properties and its effects on vascular endothelial cells[J]. Chongqing:Southwest University, 2016.

    LI Chenglong. Purification of blood lipid lowering peptides from fermented sour meat and studing of physicochemical properties and its effects on vascular endothelial cells[J]. Chongqing: Southwest University, 2016.
    [34]
    苏建辉, 马朝阳, 杨鹿, 等. 槲皮素、EGCG对胆固醇酯酶活性和胆固醇胶束抑制作用研究[J]. 食品工业科技,2015,36(11):346−349. [SU Jianhui, MA Chaoyang, YANG Lu, et al. Inhibition of pancreatic cholesterol esterase activities and cholesterol micelle of EGCG and quercetin[J]. Science and Technology of Food Industry,2015,36(11):346−349.

    SU Jianhui, MA Chaoyang, YANG Lu, et al. Inhibition of pancreatic cholesterol esterase activities and cholesterol micelle of EGCG and quercetin[J]. Science and Technology of Food Industry, 2015, 3611): 346349.
    [35]
    中华人民共和国国家卫生和计划生育委员会, 国家食品药品监督管理总局. GB 5009.124-2016 食品安全国家标准 食品中氨基酸的测定[S]. 北京:中国标准出版社, 2016. [The State Health and Family Planning Commission of the People's Republic of China, the State Food and Drug Administration. GB 5009.124-2016 National standard for food safety. Determination of amino acids in food[S]. Beijing:Standards Press of China, 2016.

    The State Health and Family Planning Commission of the People's Republic of China, the State Food and Drug Administration. GB 5009.124-2016 National standard for food safety. Determination of amino acids in food[S]. Beijing: Standards Press of China, 2016.
    [36]
    郭婷婷, 万楚筠, 黄凤洪. 响应面法优化葵花籽粕蛋白酶解工艺研究[J]. 粮食与油脂,2019,32(8):50−53. [GUO Tingting, WAN Chuyun, HUANG Fenghong. Optimization of sunflower seed meal proteolysis technology by response surface methodology[J]. Cereals & Oils,2019,32(8):50−53.

    GUO Tingting, WAN Chuyun, HUANG Fenghong. Optimization of sunflower seed meal proteolysis technology by response surface methodology[J]. Cereals & Oils, 2019, 328): 5053.
    [37]
    徐雯, 王振南, 蒲仕文, 等. 体外消化模型研究进展及其在食品中的应用[J]. 食品与发酵工业,2022,48(10):321−327. [XU Wen, WANG Zhennan, PU Shiwen, et al. Research progress of in vitro digestion model and its application in food[J]. Food and Fermentation Industries,2022,48(10):321−327.

    XU Wen, WANG Zhennan, PU Shiwen, et al. Research progress of in vitro digestion model and its application in food[J]. Food and Fermentation Industries, 2022, 4810): 321327.
    [38]
    刘丽媛, 彭晨, 赵楠, 等. 鲫鱼肽胰脂肪酶抑制活性稳定性的研究[J]. 食品科技,2013,38(10):245−248. [LIU Liyuan, PENG Chen, ZHAO Nan, et al. Stability of pancreatic lipase inhibitory activity of peptide derived from crucian[J]. Food Science and Technology,2013,38(10):245−248.

    LIU Liyuan, PENG Chen, ZHAO Nan, et al. Stability of pancreatic lipase inhibitory activity of peptide derived from crucian[J]. Food Science and Technology, 2013, 3810): 245248.
    [39]
    李瑞杰, 胡晓, 李来好, 等. 罗非鱼皮酶解物钙离子结合能力及其结合物的抗氧化活性[J]. 南方水产科学,2019,15(6):106−111. [LI Ruijie, HU Xiao, LI Laihao, et al. Calcium ion binding ability of tilapia skin hydrolysate and its antioxidant activity[J]. South China Fisheries Science,2019,15(6):106−111.

    LI Ruijie, HU Xiao, LI Laihao, et al. Calcium ion binding ability of tilapia skin hydrolysate and its antioxidant activity[J]. South China Fisheries Science, 2019, 156): 106111.
    [40]
    黄文, 余可楠, 廖婉雯, 等. 响应面法优化罗非鱼鳞钙结合肽酶解工艺及其特性表征[J]. 食品工业科技,2021,42(21):190−196. [HUANG Wen, YU Kenan, LIAO Wanwen, et al. Optimization of enzymatic hydrolysis of tilapia scale calcium binding peptides by response surface methodology and its structural characterization[J]. Science and Technology of Food Industry,2021,42(21):190−196.

    HUANG Wen, YU Kenan, LIAO Wanwen, et al. Optimization of enzymatic hydrolysis of tilapia scale calcium binding peptides by response surface methodology and its structural characterization[J]. Science and Technology of Food Industry, 2021, 4221): 190196.
    [41]
    侯珮琳, 赵肖通, 张彦青, 等. 绿豆蛋白降血脂水解物的制备及纯化工艺[J]. 食品工业科技,2020,41(9):186−192,199. [HOU Peilin, ZHAO Xiaotong, ZHANG Yanqing, et al. Preparation and purification of hydrolysate of mung bean protein for reducing blood lipids[J]. Science and Technology of Food Industry,2020,41(9):186−192,199.

    HOU Peilin, ZHAO Xiaotong, ZHANG Yanqing, et al. Preparation and purification of hydrolysate of mung bean protein for reducing blood lipids[J]. Science and Technology of Food Industry, 2020, 419): 186192,199.
    [42]
    徐霞. 藜麦蛋白质及多肽对高脂血症小鼠降脂作用及其降脂产品开发研究[D]. 成都:成都大学, 2020. [XU Xia. Effect of quinoa proteins and peptides on lipid-lowering of hyperlipidemia mice and development of lipid-lowering products[D]. Chengdu:Chengdu University, 2020.

    XU Xia. Effect of quinoa proteins and peptides on lipid-lowering of hyperlipidemia mice and development of lipid-lowering products[D]. Chengdu: Chengdu University, 2020.
    [43]
    高佩佩. 牛乳酪蛋白胰脂肪酶抑制肽的制备及其结构鉴定[D]. 杨凌: 西北农林科技大学, 2017. [GAO Peipei. Structure identification and preparation of pancreatic lipase inhibitory peptides from bovine casein[D]. Yangling: Northwest A&F University, 2017.

    GAO Peipei. Structure identification and preparation of pancreatic lipase inhibitory peptides from bovine casein[D]. Yangling: Northwest A&F University, 2017.
    [44]
    李瑞霞, 淡洁, 吕金潇, 等. 鸡肉蛋白源脂肪酶抑制肽的制备及影响因素[J]. 肉类研究,2019,33(8):29−34. [LI Ruixia, DAN Jie, LÜ Jinxiao, et al. Preparation of lipase inhibitory peptides from chicken myofibrillar protein and factors influencing anti-lipase activity[J]. Meat Research,2019,33(8):29−34.

    LI Ruixia, DAN Jie, LÜ Jinxiao, et al. Preparation of lipase inhibitory peptides from chicken myofibrillar protein and factors influencing anti-lipase activity[J]. Meat Research, 2019, 338): 2934.
    [45]
    刘静, 李诚, 胡迤萧, 等. 酶解法制备牦牛骨胶原多肽及其加工性能评价[J]. 食品与生物技术学报,2018,37(5):547−554. [LIU Jing, LI Cheng, HU Yixiao, et al. Preparation by hydrolysis method and functional properties of yak bone collagen polypeptides[J]. Journal of Food Science and Biotechnology,2018,37(5):547−554.

    LIU Jing, LI Cheng, HU Yixiao, et al. Preparation by hydrolysis method and functional properties of yak bone collagen polypeptides[J]. Journal of Food Science and Biotechnology, 2018, 375): 547554.
    [46]
    宁诗文, 崔珊珊, 尚宏丽. 响应面法优化大黄花鱼肉蛋白水解工艺及多肽抗氧化性研究[J]. 食品工业科技,2020,41(13):219−226. [NING Shiwen, CUI Shanshan, SHANG Hongli. Optimization of the protein hydrolysis process by response surface method and the antioxidant properties of polypeptides in large yellow croaker[J]. Science and Technology of Food Industry,2020,41(13):219−226.

    NING Shiwen, CUI Shanshan, SHANG Hongli. Optimization of the protein hydrolysis process by response surface method and the antioxidant properties of polypeptides in large yellow croaker[J]. Science and Technology of Food Industry, 2020, 4113): 219226.
    [47]
    郝学财, 余晓斌, 刘志钰, 等. 响应面方法在优化微生物培养基中的应用[J]. 食品研究与开发,2006,27(1):38−41. [HAO Xuecai, YU Xiaobin, LIU Zhiyu, et al. The application of response surface methodology in optimization of microbial media[J]. Food Research and Development,2006,27(1):38−41.

    HAO Xuecai, YU Xiaobin, LIU Zhiyu, et al. The application of response surface methodology in optimization of microbial media[J]. Food Research and Development, 2006, 271): 38−41.
    [48]
    赵丛枝, 寇天舒, 张子德. 发酵型无花果果酒加工工艺的研究[J]. 食品研究与开发,2014(13):79−82. [ZHAO Congzhi, KOU Tianshu, ZHANG Zide. Study on the processing technology of fermented wind of fig fruit[J]. Food Research and Development,2014(13):79−82.

    ZHAO Congzhi, KOU Tianshu, ZHANG Zide. Study on the processing technology of fermented wind of fig fruit[J]. Food Research and Development, 201413): 7982.
    [49]
    李积华, 郑为完, 张斌, 等. 绿豆蛋白的酶法水解—工艺研究[J]. 食品研究与开发,2007(3):69−73. [LI Jihua, ZHENG Weiwan, ZHANG Bin, et al. Study on the enzymatical hydrosis of mungbean protein[J]. Food Research and Development,2007(3):69−73. doi: 10.3969/j.issn.1005-6521.2007.03.019

    LI Jihua, ZHENG Weiwan, ZHANG Bin, et al. Study on the enzymatical hydrosis of mungbean protein[J]. Food Research and Development, 20073): 6973. doi: 10.3969/j.issn.1005-6521.2007.03.019
    [50]
    李莉, 张赛, 何强, 等. 响应面法在试验设计与优化中的应用[J]. 实验室研究与探索,2015,34(8):41−45. [LI Li, ZHANG Sai, HE Qiang, et al. Application of response surface methodology in experiment design and optimization[J]. Research and Exploration in Laboratory,2015,34(8):41−45.

    LI Li, ZHANG Sai, HE Qiang, et al. Application of response surface methodology in experiment design and optimization[J]. Research and Exploration in Laboratory, 2015, 348): 4145.
    [51]
    冯结铧, 娄华, 钟先锋, 等. 响应面分析法优化亚麻籽粕水解工艺研究[J]. 中国调味品,2019,44(8):99−104. [FENG Jiehua, LOU Hua, ZHONG Xianfeng, et al. Study on optimization of flaxseed meal hydrolysis process by response surface methodology[J]. China Condiment,2019,44(8):99−104.

    FENG Jiehua, LOU Hua, ZHONG Xianfeng, et al. Study on optimization of flaxseed meal hydrolysis process by response surface methodology[J]. China Condiment, 2019, 448): 99104.
    [52]
    张晶, 郑毅男, 李向高, 等. 西洋参总皂苷及单体皂苷对胰脂肪酶活性的影响[J]. 吉林农业大学学报,2002,24(1):62−63,87. [ZHANG Jing, ZHENG Yinan, LI Xianggao, et al. Effects of saponins from Panax quinquefolium linne on the metabolism of lipid[J]. Journal of Jilin Agricultural University,2002,24(1):62−63, 87.

    ZHANG Jing, ZHENG Yinan, LI Xianggao, et al. Effects of saponins from Panax quinquefolium linne on the metabolism of lipid[J]. Journal of Jilin Agricultural University, 2002, 241): 6263, 87.
    [53]
    龚受基, 滕翠琴, 梁东姨, 等. 六堡茶茶褐素体外降脂功效研究[J]. 茶叶科学,2020,40(4):536−543. [GONG Shouji, TENG Cuiqin, LIANG Dongyi, et al. In vitro study on hypolipidemic effects of theabrownins in Liupao tea[J]. Journal of Tea Science,2020,40(4):536−543.

    GONG Shouji, TENG Cuiqin, LIANG Dongyi, et al. In vitro study on hypolipidemic effects of theabrownins in Liupao tea[J]. Journal of Tea Science, 2020, 404): 536543.
    [54]
    刘晓静. 亚麻籽肽降胆固醇作用的研究[D]. 呼和浩特:内蒙古农业大学, 2020. [LIU Xiaojing. Study on the cholesterol-lowering effect of flaxseed peptide[D]. Hohhot:Inner Mongolia Agricultural University, 2020.

    LIU Xiaojing. Study on the cholesterol-lowering effect of flaxseed peptide[D]. Hohhot: Inner Mongolia Agricultural University, 2020.
    [55]
    霍世欣, 周陶忆, 司晓晶, 等. 荷叶黄酮化合物对胰脂肪酶抑制作用的研究[J]. 天然产物研究与开发,2008,20(2):328−331. [HUO Shixin, ZHOU Taoyi, SI Xiaojing, et al. Inhibitory effect on pancreatic lipase of flavonoids derived from lotus leaf[J]. Natural Product Research and Development,2008,20(2):328−331.

    HUO Shixin, ZHOU Taoyi, SI Xiaojing, et al. Inhibitory effect on pancreatic lipase of flavonoids derived from lotus leaf[J]. Natural Product Research and Development, 2008, 202): 328331.
    [56]
    王建成, 邢岩, 张丽梅. 红松仁多肽酶解工艺优化及活性研究[J]. 中国油脂, 2022:1−15. [WANG Jiancheng, XING Yan, ZHANG Limei. Optimization of enzymatic hydrolysis process and activity of Korean pine kernel polypeptide[J]. China Oils and Fats, 2022:1−15.

    WANG Jiancheng, XING Yan, ZHANG Limei. Optimization of enzymatic hydrolysis process and activity of Korean pine kernel polypeptide[J]. China Oils and Fats, 2022: 1−15.
    [57]
    BRADY L, BRZOZOWSKI A M, DEREWENDA Z S, et al. A serine protease triad forms the catalytic centre of a triacylglycerol lipase[J]. Nature,1990,343(6260):767−70. doi: 10.1038/343767a0
    [58]
    魏连会, 宋淑敏, 董艳, 等. 汉麻籽多肽的氨基酸营养组成与体外结合胆酸盐能力的研究[J]. 中国粮油学报,2020,35(1):62−66. [WEI Lianhui, SONG Shumin, DONG Yan, et al. Evaluation of amino acid nutritional composition and in vitro binding of bile salts power of hemp seed polypeptide[J]. Journal of the Chinese Cereals and Oils,2020,35(1):62−66. doi: 10.3969/j.issn.1003-0174.2020.01.011

    WEI Lianhui, SONG Shumin, DONG Yan, et al. Evaluation of amino acid nutritional composition and in vitro binding of bile salts power of hemp seed polypeptide[J]. Journal of the Chinese Cereals and Oils, 2020, 351): 6266. doi: 10.3969/j.issn.1003-0174.2020.01.011
    [59]
    朱晓连, 陈华, 蔡冰娜, 等. 具有结合胆酸盐作用卵形鲳鲹蛋白酶解物的制备和分子量分布研究[J]. 南方水产科学,2017,13(2):101−108. [ZHU Xiaolian, CHEN Hua, CAI Bingna, et al. Production of bile acid salts binding hydrolysate from Trachinotus ovatus and its molecular weight distribution[J]. South China Fisheries Science,2017,13(2):101−108.

    ZHU Xiaolian, CHEN Hua, CAI Bingna, et al. Production of bile acid salts binding hydrolysate from Trachinotus ovatus and its molecular weight distribution[J]. South China Fisheries Science, 2017, 132): 101108.
    [60]
    姜欣洋, 陈华, 蔡冰娜, 等. 补骨脂乙醇提取物活性成分与抗氧化及胆酸盐结合能力的关联性分析[J]. 食品工业科技,2022,43(13):381−388. [JIANG Xinyang, CHEN Hua, CAI Bingna, et al. Correlation analysis between the active ingredients and the antioxidant or cholate-binding ability of ethanol extracts from Psoralea corylifolia L[J]. Science and Technology of Food Industry,2022,43(13):381−388.

    JIANG Xinyang, CHEN Hua, CAI Bingna, et al. Correlation analysis between the active ingredients and the antioxidant or cholate-binding ability of ethanol extracts from Psoralea corylifolia L[J]. Science and Technology of Food Industry, 2022, 4313): 381388.
    [61]
    宋玲钰. 花生降胆固醇肽的制备及饮料开发[D]. 泰安:山东农业大学, 2016. [SONG Lingyu. Preparation of cholesterol lowering peanut polypeptide and development of beverage[D]. Taian:Shandong Agricultural University, 2016.

    SONG Lingyu. Preparation of cholesterol lowering peanut polypeptide and development of beverage[D]. Taian: Shandong Agricultural University, 2016.
    [62]
    刘馥源. 香菇多酚提取工艺、生物活性及残渣利用研究[D]. 南昌:江西农业大学, 2021. [LIU Fuyuan. Study on extraction technology, biological activity of Lentinus edodes polyphenols and residue utilization[D]. Nanchang:Jiangxi Agricultural University, 2021.

    LIU Fuyuan. Study on extraction technology, biological activity of Lentinus edodes polyphenols and residue utilization[D]. Nanchang: Jiangxi Agricultural University, 2021.
    [63]
    武媛. 石榴皮多糖的提取纯化、结构表征及体外降脂活性研究[D]. 西安:陕西师范大学, 2021. [WU Yuan. Extraction, purification, structural characterization and lipid-lowering activity of pomegranate peel polysaccharide in vitro[D]. Xi'an:Shaanxi Normal University, 2021.

    WU Yuan. Extraction, purification, structural characterization and lipid-lowering activity of pomegranate peel polysaccharide in vitro[D]. Xi'an: Shaanxi Normal University, 2021.
    [64]
    AHHMED A M, MUGURUMA M. A review of meat protein hydrolysates and hypertension[J]. Meat Science,2010,86(1):110−8. doi: 10.1016/j.meatsci.2010.04.032
    [65]
    龚受基, 蒙彦妃, 曹惠怡, 等. 凡纳滨对虾蛋白体外降脂作用分析[J]. 食品工业科技,2020,41(11):316−321. [GONG Shouji, MENG Yanfei, CAO Huiyi, et al. Hypolipidemic effects of protein from Penaeus vannamei in vitro[J]. Science and Technology of Food Industry,2020,41(11):316−321.

    GONG Shouji, MENG Yanfei, CAO Huiyi, et al. Hypolipidemic effects of protein from Penaeus vannamei in vitro[J]. Science and Technology of Food Industry, 2020, 4111): 316321.
    [66]
    OSADA Y, TSUCHIMOTO M, FUKUSHIMA H, et al. Hypouricemic effect of the novel xanthine oxidase inhibitor, TEI-6720, in rodents[J]. European Journal of Pharmacology,1993,241(2):183−188.
    [67]
    邹琳. 鲣鱼黄嘌呤氧化酶抑制肽的酶解制备及功能活性评价[D]. 杭州:浙江大学, 2019. [ZOU Lin. Enzymatic preparation and functional evaluation of xanthine oxidase inhibitory peptides from skipjack tuna[D]. Hangzhou:Zhejiang University, 2019.

    ZOU Lin. Enzymatic preparation and functional evaluation of xanthine oxidase inhibitory peptides from skipjack tuna[D]. Hangzhou: Zhejiang University, 2019.
    [68]
    詹苏泓, 吉宏武, 张迪, 等. 远东拟沙丁鱼黄嘌呤氧化酶抑制肽的制备及其降尿酸活性的研究[J]. 食品与发酵工业,2022,48(16):79−86. [ZHAN Suhong, JI Hongwu, ZHANG Di, et al. Preparation of the xanthine oxidase inhibitory peptide from Sardinops sagax and its activity on reducing uric acid[J]. Food and Fermentation Industries,2022,48(16):79−86.

    ZHAN Suhong, JI Hongwu, ZHANG Di, et al. Preparation of the xanthine oxidase inhibitory peptide from Sardinops sagax and its activity on reducing uric acid[J]. Food and Fermentation Industries, 2022, 4816): 7986.
    [69]
    JIANG C, WANG Q, WEI Y, et al. Cholesterol-lowering effects and potential mechanisms of different polar extracts from Cyclocarya paliurus leave in hyperlipidemic mice[J]. Journal of Ethnopharmacology,2015,176:17−26. doi: 10.1016/j.jep.2015.10.006
    [70]
    徐向英. 燕麦蛋白提取、性质以及降血脂活性研究[D]. 郑州:河南工业大学, 2012. [XU Xiangying. The studies on extraction, properties and lipid-lowering activity of oat protein[D]. Zhengzhou:Henan University of Technology, 2012.

    XU Xiangying. The studies on extraction, properties and lipid-lowering activity of oat protein[D]. Zhengzhou: Henan University of Technology, 2012.
    [71]
    ZHONG F, ZHANG X, MA J, et al. Fractionation and identification of a novel hypocholesterolemic peptide derived from soy protein Alcalase hydrolysates[J]. Food Research International,2007,40(6):756−762. doi: 10.1016/j.foodres.2007.01.005
    [72]
    高婕. 具有降胆固醇活性的亚麻籽肽的制备及其对大鼠降胆固醇作用的研究[D]. 呼和浩特:内蒙古农业大学, 2018. [GAO Jie. A novel hypocholesterolemic peptide derived from flaxseed protein and its effect on hyperlipidemic rats[D]. Hohhot:Inner Mongolia Agricultural University, 2018.

    GAO Jie. A novel hypocholesterolemic peptide derived from flaxseed protein and its effect on hyperlipidemic rats[D]. Hohhot: Inner Mongolia Agricultural University, 2018.
    [73]
    宋淑敏, 魏连会, 董艳, 等. 汉麻降脂肽氨基酸序列分析[J]. 中国粮油学报,2021,36(3):51-59. [SONG Shumin, WEI Lianhui, DONG Yan, et al. Analysis on amino acid sequence of hemp seed hypolipidemic polypeptided[J]. Journal of the Chinese Cereals and Oils,2021,36(3):51-59.

    SONG Shumin, WEI Lianhui, DONG Yan, et al. Analysis on amino acid sequence of hemp seed hypolipidemic polypeptided[J]. Journal of the Chinese Cereals and Oils, 2021, 363): 51-59.
    [74]
    TAKESHITA T, OKOCHI M, KATO R, et al. Screening of peptides with a high affinity to bile acids using peptide arrays and a computational analysis[J]. Journal of Bioscience and Bioengineering,2011,112(1):92−97. doi: 10.1016/j.jbiosc.2011.03.002
    [75]
    郑睿. 降胆固醇亚麻籽蛋白酶解肽的制备及结构表征[D]. 呼和浩特:内蒙古农业大学, 2016. [ZHENG Rui. Structure identification and preparation of peptide from flaxseed protein with hypocholesterolemic[D]. Hohhot:Inner Mongolia Agricultural University, 2016.

    ZHENG Rui. Structure identification and preparation of peptide from flaxseed protein with hypocholesterolemic[D]. Hohhot: Inner Mongolia Agricultural University, 2016.
    [76]
    KONGO-DIA J U, NSOR-ATIND J, ZHANG H. Hypocholesterolemic activity and characterization of protein hydrolysates from defatted corn protein[J]. Asian Journal of Biochemistry,2011,6(6):439−449. doi: 10.3923/ajb.2011.439.449
    [77]
    李宇娟. 鲣鱼降尿酸肽的制备分离、结构表征及功效机制研究[D]. 广州:华南理工大学, 2019. [LI Yujuan. Preparation, isolation, structural characterization, and the effect mechanism of uric acid-lowering peptides derived from bonito[D]. Guangzhou:South China University of Technology, 2019.

    LI Yujuan. Preparation, isolation, structural characterization, and the effect mechanism of uric acid-lowering peptides derived from bonito[D]. Guangzhou: South China University of Technology, 2019.
  • Cited by

    Periodical cited type(6)

    1. 徐于珽,于泓博,王晶,高文越,关云鹏,易思彤,任广辉,白长川,朱英. 基于肠肝轴中医药调节肠道功能防治肝细胞癌作用机制的研究进展. 中国中西医结合消化杂志. 2024(03): 222-225+232 .
    2. 闫晓慧,姜思亮,刘雪晴,梁军,夏永刚. 灵芝多糖的构效关系、提取工艺及药理作用研究进展. 中医药学报. 2024(04): 117-122 .
    3. 李秀清,纪宝玉,何江龙,李盼盼,吴婉阁,陈随清,董诚明,裴莉昕. 基于“习性-生境-部位-药性”的菌类中药相关性分析. 中国实验方剂学杂志. 2024(10): 133-139 .
    4. 罗世博,刘伟,谢星,冯亚萍,彭春彦,张露. 紫色野生樱桃李提取物抗氧化和降血糖活性研究及化学成分鉴定. 食品与发酵工业. 2024(19): 191-200 .
    5. 池妍,王雅芝,王昊,汲晨锋. 基于Citespace可视化分析5种真菌多糖研究进展. 中草药. 2024(23): 8130-8152 .
    6. 周美伶,范春艳,王宏艳. 中药多糖在非酒精性脂肪性肝病中的研究进展. 现代畜牧兽医. 2023(12): 89-93 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (197) PDF downloads (40) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return