WANG Kai, ZHAO Ping, FENG Peiyao, et al. Optimization of Fermentation Medium of Bacterial Cellulose Production by Gluconacetobacter and Effects of Exogenous Substances on Its Metabolism[J]. Science and Technology of Food Industry, 2023, 44(21): 208−215. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022120254.
Citation: WANG Kai, ZHAO Ping, FENG Peiyao, et al. Optimization of Fermentation Medium of Bacterial Cellulose Production by Gluconacetobacter and Effects of Exogenous Substances on Its Metabolism[J]. Science and Technology of Food Industry, 2023, 44(21): 208−215. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022120254.

Optimization of Fermentation Medium of Bacterial Cellulose Production by Gluconacetobacter and Effects of Exogenous Substances on Its Metabolism

More Information
  • Received Date: January 02, 2023
  • Available Online: September 04, 2023
  • In order to improve the yield of bacterial cellulose (BC), the fermentation medium of the Gluconacetobacter xylinus was optimized by response surface methodology. Based on the optimization results, the effects of sodium alginate (SA), sodium carboxymethyl cellulose (CMC-Na) and carboxymethyl cellulose (CMC) on the yield of BC, total sugar consumption, acetic acid and pyruvic acid were investigated. The results showed that when the amounts of addition of glucose was 4%, yeast extract powder was 1%, peptone was 0.8%, MgSO4 was 1.9%, Na2HPO4 was 0.2%, acetic acid was 0.4%, ethanol was 1.6%, the actual yield of BC could reach 5.19 g/L. After adding SA, CMC-Na and CMC, the total sugar consumption increased by 29.9%, 22.82% and 15.73%, and the yield of BC was 6.72, 6.01 and 5.1 g/L, respectively. The content of pyruvic acid in SA group and CMC-Na group was increased by 29.02% and 16.52% compared with the control group. SA and CMC-Na promoted the accumulation and utilization of pyruvate acid, the yield of BC accumulation was increased. The highest acetic acid accumulation (4.27 g/L) was observed in the CMC addition group, which had a certain relationship to the lower yield of BC than the control group.
  • [1]
    赵鑫, 熊健力, 任叶琳, 等. 细菌纤维素合成与鉴定研究综述[J]. 化工进展,2020,39(S2):262−268 doi: 10.16085/j.issn.1000-6613.2020-0384

    ZHAO X, XIONG J L, REN Y L, et al. Synthesis and identification of bacterial cellulose[J]. Chemical Industry and Engineering Progress,2020,39(S2):262−268. doi: 10.16085/j.issn.1000-6613.2020-0384
    [2]
    RADIMAN C, YULIANI G. Coconut water as a potential resource for cellulose acetate membrane preparation[J]. Polymer International,2008,57(3):502−508. doi: 10.1002/pi.2374
    [3]
    钱子俊, 张一瞳, 刘鹏, 等. 不同添加剂对木醋杆菌发酵细菌纤维素的影响[J]. 林业工程学报,2018,3(4):62−67

    QIAN Z J, ZHANG Y T, LIU P. Effects of different additives on bacterial cellulose production by Gluconacetobacter xylinum[J]. Journal of Forestry Engineering,2018,3(4):62−67.
    [4]
    JI L, ZHANG F, ZHU L, et al. An in-situ fabrication of bamboo bacterial cellulose/sodium alginate nanocomposite hydrogels as carrier materials for controlled protein drug delivery[J]. International Journal of Biological Macromolecules,2021,170:459−468. doi: 10.1016/j.ijbiomac.2020.12.139
    [5]
    张艳, 孙怡然, 于飞, 等. 细菌纤维素及其复合材料在环境领域应用的研究进展[J]. 复合材料学报,2021,38(8):2418−2427 doi: 10.13801/j.cnki.fhclxb.20210402.002

    ZHANG Y, SUN Y R, YU F, et al. Research progress on the application of bacterial cellulose and its composites in environmental field[J]. Acta Materiae Compositae Sinica,2021,38(8):2418−2427. doi: 10.13801/j.cnki.fhclxb.20210402.002
    [6]
    AREVALO GALLEGOS A M, CARRERA S H, PARRA R, et al. Bacterial cellulose:A sustainable source to develop value-added products-A review[J]. BioResources,2016,11(2):5641−5655. doi: 10.15376/biores.11.2.Gallegos
    [7]
    杨颖, 贾静静, 陆胜民, 等. 细菌纤维素高产菌株的鉴定及产物分析[J]. 中国食品学报,2012,12(7):216−221 doi: 10.3969/j.issn.1009-7848.2012.07.032

    YANG Y, JIA J J, LU S M, et al. Identification and product characteristics analysis of cellulose-producing strain[J]. Journal of Chinese Institute of Food Science and Technology,2012,12(7):216−221. doi: 10.3969/j.issn.1009-7848.2012.07.032
    [8]
    BLANCO PARTE F G, SANTOSO S P, CHOU C C, et al. Current progress on the production, modification, and applications of bacterial cellulose[J]. Critical Reviews in Biotechnology,2020,40(3):397−414. doi: 10.1080/07388551.2020.1713721
    [9]
    尤勇. 乙醇、乙酸、乳酸对木葡萄糖醋杆菌合成细菌纤维素的影响及其功能分析[D]. 天津:天津科技大学, 2019

    YOU Y. Function exploration of ethanol, acetic acid and lactic acid on the synthesis of bacterial cellulose in Gluconacetobacter xylinus[D]. Tianjin:Tianjin University of Science and Technology, 2019.
    [10]
    JUNG J Y, PARK J K, CHANG H N. Bacterial cellulose production by Gluconacetobacter hansenii in an agitated culture without living non-cellulose producing cells[J]. Enzyme and Microbial Technology,2005,37(3):347−354. doi: 10.1016/j.enzmictec.2005.02.019
    [11]
    KESHK S, SAMESHIMA K. Influence of lignosulfonate on crystal structure and productivity of bacterial cellulose in a static culture[J]. Enzyme and Microbial Technology,2006,40(1):4−8. doi: 10.1016/j.enzmictec.2006.07.037
    [12]
    ZHU H, JIA S, WAN T, et al. Biosynthesis of spherical Fe3O4/bacterial cellulose nanocomposites as adsorbents for heavy metal ions[J]. Carbohydrate Polymers,2011,86(4):1558−1564. doi: 10.1016/j.carbpol.2011.06.061
    [13]
    毋锐琴. 高产细菌纤维素菌株的筛选及发酵工艺优化[D]. 杨凌:西北农林科技大学, 2008

    WU R Q. Selection of strain with high-yield bacterial cellulose and optimization of fermentation process[D]. Yangling:Northwest A&F University, 2008.
    [14]
    李艳. 细菌高产菌株筛选鉴定与发酵工艺优化[D]. 杨凌:西北农林科技大学, 2013

    LI Y. Selection and identification of strain with high-yield bacterial cellulose and optimization of fermentation process[D]. Yangling:Northwest A&F University, 2013.
    [15]
    赵浩杰, 王光翟, 廖博文, 等. 响应面法优化动态发酵细菌纤维素菌株HS01培养基[J]. 纤维素科学与技术,2020,28(4):1−9, 27 doi: 10.16561/j.cnki.xws.2020.04.02

    ZHAO H J, WANG G Z, LIAO B W, et al. Optimization of fermentation medium of shake flask for bacterial cellulose producing strain Komagataeibacter hansenii HS01 by response surface methodology[J]. Journal of Cellulose Science and Technology,2020,28(4):1−9, 27. doi: 10.16561/j.cnki.xws.2020.04.02
    [16]
    林杉, 赵萍, 付云娜, 等. 羊肚菌胞外多糖液态发酵培养基配方优化及其体外降血糖活性[J]. 食品工业科技,2022,43(20):196−203 doi: 10.13386/j.issn1002-0306.2021120191

    LIN S, ZHAO P, FU Y N, et al. Optimization of liquid fermentation medium formulation of Morchella eohespera exopolysaccharide and its hypoglycemic activity in vitro[J]. Science and Technology of Food Industry,2022,43(20):196−203. doi: 10.13386/j.issn1002-0306.2021120191
    [17]
    MARTINS D, FERREIRA D D C, GAMA M, et al. Dry bacterial cellulose and carboxymethyl cellulose formulations with interfacial-active performance:Processing conditions and redispersion[J]. Cellulose,2020,27(11):6505−6520. doi: 10.1007/s10570-020-03211-9
    [18]
    李元敬. 细菌纤维素发酵优化及代谢途径调控[D]. 哈尔滨:黑龙江大学, 2011

    LI Y J. Optimization of bacterial cellulose fermentation and regulation of metabolic pathways[D]. Harbin:Heilongjiang University, 2011.
    [19]
    李孔翰, 陈玲琳, 周建森, 等. TAT-SOD在长期保藏的重组毕赤酵母中表达的条件优化[J]. 食品与生物技术学报,2020,39(8):51−58 doi: 10.3969/j.issn.1673-1689.2020.08.007

    LI K H, CHEN L L, ZHOU J S, et al. Optimization of TAT-SOD expression conditions in long-term preserved recombinant Pichia pastoris[J]. Journal of Food Science and Biotechnology,2020,39(8):51−58. doi: 10.3969/j.issn.1673-1689.2020.08.007
    [20]
    贾青慧, 卢红梅, 陈莉, 等. 增效因子对木醋杆菌产细菌纤维素发酵液中物质变化的影响[J]. 中国酿造,2016,35(1):14−18

    JIA Q H, LU H M, CHEN L, et al. Effect of synergistic factor on the substances change of fermentation liquid with bacterial cellulose-producing Acetobacter xylinum[J]. China Brewing,2016,35(1):14−18.
    [21]
    张丽平, 卢红梅, 戴锐, 等. 乙醇及有机酸对木醋杆菌合成细菌纤维素的影响[J]. 食品工业科技,2014,35(4):161−165, 169 doi: 10.13386/j.issn1002-0306.2014.04.059

    ZHANG L P, LU H M, DAI R, et al. Study on the function of ethanol and organic acid to Acetobacter xylinum synthetic bacterial cellulose[J]. Science and Technology of Food Industry,2014,35(4):161−165, 169. doi: 10.13386/j.issn1002-0306.2014.04.059
    [22]
    国家卫生和计划生育委员会 GB 5009.237-2016 食品pH值的测定[S]. 北京:中国标准出版社, 2016

    National Health and Family Planning Commission GB 5009.237-2016 Determination of food pH value[S]. Beijing:Standards Press of China, 2016.
    [23]
    张继冉. 丙酮酸发酵工艺的优化及其快速测定方法的研究[D]. 开封:河南大学, 2011

    ZHANG J R. Optimations on parameters control of pyruvate fermentation and studies on rapid detection of pyruvic acid[D]. Kaifeng:Henan University, 2011.
    [24]
    LIU M, LIU L, JIA S, et al. Complete genome analysis of Gluconacetobacter xylinus CGMCC 2955 for elucidating bacterial cellulose biosynthesis and metabolic regulation[J]. Scientific Reports,2018,8(1):6266. doi: 10.1038/s41598-018-24559-w
    [25]
    文章, 何朝玖, 陈才, 等. 以黄水为培养基生产细菌纤维素[J]. 食品工业科技,2021,42(9):100−107 doi: 10.13386/j.issn1002-0306.2020070020

    WEN Z, HE Z J, CHEN C, et al. Production of bacterial cellulose using “yellow water”as medium [J]. Science and Technology of Food Industry,2021,42(9):100−107. doi: 10.13386/j.issn1002-0306.2020070020
    [26]
    RUKA D R, SIMON G P, DEAN K M. In situ modifications to bacterial cellulose with the water insoluble polymer poly-3-hydroxybutyrate[J]. Carbohydrate Polymers,2013,92(2):1717−1723. doi: 10.1016/j.carbpol.2012.11.007
    [27]
    李萧, 王淼. Komagataeibacter rhaeticus 3-15全基因组及葡萄糖脱氢酶基因缺失体的构建[J]. 工业微生物,2020,50(2):7−14 doi: 10.3969/j.issn.1001-6678.2020.02.002

    LI X, WANG M. Whole genome and construction of glucose dehydrogenase gene deletion in Komagataeibacter rhaeticus 3-15[J]. Industrial Microbiology,2020,50(2):7−14. doi: 10.3969/j.issn.1001-6678.2020.02.002
    [28]
    CHAWLA P R, BAJAJ I B, SURVASE S A, et al. Microbial cellulose:Fermentative production and applications[J]. Food Technology & Biotechnology, 2009, 47(2):107−24.
    [29]
    李萧. 莱蒂亚驹形杆菌315生物合成细菌纤维素[D]. 无锡:江南大学, 2020

    LI X. The bacterial cellulose biosynthesis of Komagataeibacter rhaeticus 315[D]. Wuxi:Jiangnan University, 2020.
    [30]
    吴敏, 喻少帆, 曹献英, 等. 添加海藻酸钠对椰子水体系合成细菌纤维素的影响[J]. 精细化工,2011,28(5):456−460 doi: 10.13550/j.jxhg.2011.05.010

    WU M, YU S F, CAO X Y, et al. Effect of different additive amount of sodium alginate in coconut water culture system on bacterial cellulose produced by Acetobacter xylinum [J]. Fine Chemicals,2011,28(5):456−460. doi: 10.13550/j.jxhg.2011.05.010
    [31]
    马霞, 贾士儒, 关凤梅, 等. 有机酸对木醋杆菌合成细菌纤维素的影响规律[J]. 纤维素科学与技术,2003(1):34−37 doi: 10.3969/j.issn.1004-8405.2003.01.007

    MA X, JIA S R, GUAN F M, et al. Effect of organic acid on the production of Acetobacter xylinum cellulose [J]. Journal of Cellulose Science and Technology,2003(1):34−37. doi: 10.3969/j.issn.1004-8405.2003.01.007
    [32]
    李珏, 董梦娜, 吴延鸽, 等. 葡糖酸醋杆菌JR-02产细菌纤维素发酵工艺优化[J]. 中国酿造,2018,37(3):42−48

    LI J, DONG M N, WU Y G, et al. Optimization of fermentation process of Gluconacetobacter hasenii JR-02 for bacterial cellulose production [J]. China Brewing,2018,37(3):42−48.

Catalog

    Article Metrics

    Article views PDF downloads Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return