Citation: | SUN Dan, LI Huan, JIANG Yun, et al. The Structure, Function, Modification Methods and Application in Food Field of Curdlan[J]. Science and Technology of Food Industry, 2023, 44(20): 475−482. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022120186. |
[1] |
梁赢. 低聚热凝胶的共培养发酵及其生物活性的研究[D]. 无锡: 江南大学, 2018
LIANG Y. Oligo-curdlan production by co-cultivation fermentation and its biological activity[D]. Wuxi: Jiangnan University, 2018.
|
[2] |
曾凡宾. 新型食品增稠剂中的新星—可得然胶[J]. 食品安全导刊,2013(9):48−49. [ZENG B F. Corderan gum, a new star in new food thickeners[J]. China Food Safety,2013(9):48−49.
ZENG B F. Corderan gum, a new star in new food thickeners[J]. China Food Safety, 2013, (9): 48-49.
|
[3] |
CAI Z, ZHANG H. The effect of carboxymethylation on the macromolecular conformation of the (1→3)-β-D-glucan of curdlan in water[J]. Carbohydrate Polymers,2021,272:118456. doi: 10.1016/j.carbpol.2021.118456
|
[4] |
CHEN Y, WANG F. Review on the preparation, biological activities and applications of curdlan and its derivatives[J]. European Polymer Journal,2020,141:110096. doi: 10.1016/j.eurpolymj.2020.110096
|
[5] |
HARADA T, YOSHIMURA T, HIDAKA H, et al. Production of a new acidic polysaccharide, succinoglucan by Alcaligenes faecalis var.myxogenes[J]. Agricultural and Biological Chemistry,1965,29(8):757−762. doi: 10.1080/00021369.1965.10858462
|
[6] |
詹晓北, 韩杰, 朱莉. 一种新型的微生物多糖食品添加剂—热凝胶[J]. 冷饮与速冻食品工业,2001(1):27−30,32. [ZHAN X B, HAN J, ZHU L. New kind of microbial polysaccharide food additive-curdlan[J]. Beverage & Fast Frozen Food Industry,2001(1):27−30,32.
ZHAN X B, HAN J, ZHU L. new kind of microbial polysaccharide food additive–curdlan[J]. Beverage & Fast Frozen Food Industry, 2001, (1): 27-30, 32.
|
[7] |
俞珊, 段孟霞, 童彩玲, 等. 可得然胶功能性质及其在食品中的应用研究进展[J]. 食品科学,2022,43(19):277−284. [YU S, DUAN M X, TONG C L, et al. Research progress on functional properties of curdlan and its application in food[J]. Food Science,2022,43(19):277−284.
YU S, DUAN X M, TONG C L, et al. Research progress on functional properties of curdlan and its application in food[J]. Food Science, 2022, 43(19): 277-284.
|
[8] |
郭嘉, 冯杰, 谭贻, 等. 灵芝液态发酵胞内外多糖的研究进展[J]. 微生物学通报,2022,49(10):4337−4356. [GUO J, FENG J, TAN Y, et al. Liquid fermentation of Ganoderma Lingzhi for intracellular and extracellular polysaccharides: A review[J]. Microbiology China,2022,49(10):4337−4356.
GUO J, FENG J, TAN Y, et al. Liquid fermentation of ganoderma lingzhi for intracellular and extracellular polysaccharides: A review[J]. Microbiology China, 2022, 49(10): 4337-4356.
|
[9] |
李敏, 朱莉, 詹晓北. 以甘油为碳源生产低分子质量β-1, 3-葡聚糖的发酵工艺[J]. 食品与发酵工业,2022,48(17):21−28. [LI M, ZHU L, ZHAN X B. Fermentation process foe preoaration of low-molecular-weight β-1,3-glucan using glycerol as carbon source[J]. Food and Fermentation Industries,2022,48(17):21−28.
LI M, ZHU L, ZHAN X B. Fermentation process foe preoaration of low-molecular-weight β-1, 3-glucan using glycerol as carbon source[J]. Food and Fermentation Industries, 2022, 48(17): 21-28.
|
[10] |
詹晓北, 韩杰, 李珍雨, 等. 一株粪产碱杆菌(Alcaligenes faecalis)产热凝胶的发酵条件[J]. 无锡轻工大学学报,2001(4):347−350. [ZHAN X B, HAN J, LI Z Y, et al. The fermentation conditions of curdlan by Alcaligenes faecalis strain[J]. Journal of Wuxi University of Light Industry,2001(4):347−350.
ZHAN X B, HAN J, LI Z Y, et al. The fermentation conditions of curdlan by Alcaligenes faecalis strain[J]. Journal of Wuxi University of Light Industry, 2001, (4): 347-350.
|
[11] |
孙永生, 王磊, 詹晓北, 等. 氮源NH4Cl浓度对粪产碱杆菌发酵生产热凝胶的影响[J]. 生物工程学报,2005(2):328−331. [SUN Y S, WANG L, ZHAN X B, et al. Influence of nitrogen source NH4Cl concentration on curdlan production in Alcaligenes faecalis[J]. Chinese Journal of Biotechnology,2005(2):328−331.
SUN Y S, WANG L, ZHAN X B, et al. Influence of nitrogen source NH4Cl concentration on curdlan production in Alcaligenes faecalis[J]. Chinese Journal of Biotechnology, 2005, (2): 328-331.
|
[12] |
史其峰, 詹晓北, 郑志永. 粪产碱杆菌在不同底物限制性条件下连续培养[J]. 食品与生物技术学报,2008(5):67−72. [SHI Q F, ZHAN X B, ZHENG Z Y. Continuous cultivation of Alcaligenes faecalis in medium containing different sole limited substrates[J]. Journal of Food Science and Biotechnology,2008(5):67−72.
SHI Q F, ZHAN X B, ZHENG Z Y. Continuous cultivation of Alcaligenes faecalis in medium containing different sole limited substrates[J]. Journal of Food Science and Biotechnology, 2008, (5): 67-72.
|
[13] |
于丽珺, 路敬, 吴剑荣, 等. 低聚磷酸盐对粪产碱杆菌合成热凝胶的影响[J]. 微生物学通报,2010,37(5):664−670. [YU L J, LU J, WU J R, et al. Influence of low-polyphosphates on curdlan production by Alcaligenes faecalis var. myxogene[J]. Microbiology China,2010,37(5):664−670.
YU L J, LU J, WU J R, et al. Influence of low-polyphosphates on curdlan production by Alcaligenes faecalis var. myxogene[J]. Microbiology China, 2010, 37(5): 664-670.
|
[14] |
路敬, 吴剑荣, 于丽珺, 等. 荧光定量PCR分析土壤杆菌及其ntrC突变株对氮源的应答反应[J]. 食品与生物技术学报,2012,31(12):1282−1288. [LU J, WU J R, YU L J, et al. Application of real-time pcr to study the responses of Agrobacterium sp. and the mutant ntrC to nitrogen availablility[J]. Journal of Food Science and Biotechnology,2012,31(12):1282−1288.
LU J, WU J R, YU L J, et al. Application of real-time pcr to study the responses of Agrobacterium sp. and the mutant ntrC to nitrogen availablility[J]. Journal of Food Science and Biotechnology, 2012, 31(12): 1282-1288.
|
[15] |
马立伟. 微生物多糖热凝胶高生产强度发酵工艺研究[D]. 无锡: 江南大学, 2008
MA L W. Study on the high productivity fermentation technology of an extracellular microbial polysaccharide-curdlan[D]. Wuxi: Jiangnan University, 2008.
|
[16] |
ZHANG W, GAO H, HUANG Y, et al. Glutamine synthetase gene glnA plays a vital role in curdlan biosynthesis of Agrobacterium sp. CGMCC 11546[J]. International Journal of Biological Macromolecules, 2020, 165(Pt A): 222-230.
|
[17] |
GAO H, XIE F, ZHANG W, et al. Characterization and improvement of curdlan produced by a high-yield mutant of Agrobacterium sp. ATCC 31749 based on whole-genome analysis[J]. Carbohydrate Polymers,2020,245:116486. doi: 10.1016/j.carbpol.2020.116486
|
[18] |
WEST T P. Production of the polysaccharide curdlan by Agrobacterium species on processing coproducts and plant lignocellulosic hydrolysates[J]. Fermentation,2020,6(1):16. doi: 10.3390/fermentation6010016
|
[19] |
GAO M, LIU Z, ZHAO Z, et al. Exopolysaccharide synthesis repressor genes (exoR and exoX) related to curdlan biosynthesis by Agrobacterium sp[J]. International Journal of Biological Macromolecules,2022,205:193−202. doi: 10.1016/j.ijbiomac.2022.02.063
|
[20] |
董学前. 微生物发酵生产可得然胶的研究[D]. 济南: 山东大学, 2011
DONG X Q. Study on curdlan production by microbial fermentatiom[D]. Jinan: Shangdong University, 2011.
|
[21] |
QIN Z, YANG D, YOU X, et al. The recognition mechanism of triple-helical beta-1, 3-glucan by a beta-1, 3-glucanase[J]. Chemical communications (Cambridge, England),2017,53(67):9368−9371. doi: 10.1039/C7CC03330C
|
[22] |
YAN X, LIU B, RU G, et al. Preparation and characterization of curdlan with unique single-helical conformation and its assembly with Congo red[J]. Carbohydrate Polymers,2021,263:117985. doi: 10.1016/j.carbpol.2021.117985
|
[23] |
YAN J K, CAI W D, WANG C, et al. Macromolecular behavior, structural characteristics and rheological properties of alkali-neutralization curdlan at different concentrations[J]. Food Hydrocolloids,2020,105(C):105785.
|
[24] |
XU X, WANG Q, XUE S, et al. Effect of alkali-neutralization treatment on triple-helical aggregates and independent triple helices of curdlan[J]. Carbohydrate Polymers,2021,259:117775. doi: 10.1016/j.carbpol.2021.117775
|
[25] |
ZHANG H, NISHINARI K. Characterization of the conformation and comparison of shear and extensional properties of curdlan in DMSO[J]. Food Hydrocolloids,2008,23(6):1570−1578.
|
[26] |
WU M, CHEN X, XU J, et al. Freeze-thaw and solvent-exchange strategy to generate physically cross-linked organogels and hydrogels of curdlan with tunable mechanical properties[J]. Carbohydrate Polymers,2022,278:119003. doi: 10.1016/j.carbpol.2021.119003
|
[27] |
RUORAN Z, J E K. Properties, chemistry, and applications of the bioactive polysaccharide curdlan[J]. Biomacromolecules,2014,15(4):1079−1096. doi: 10.1021/bm500038g
|
[28] |
岳莉娜. 羟丙基甲基纤维素/可得然胶共混体系的微观结构和性能研究[D]. 扬州: 扬州大学, 2021
YUE L N. Microstructure and properties of hydroxypropyl methylcellulose/curdlan blends[D]. Yangzhou: Yangzhou University, 2021.
|
[29] |
LIU H, LIANG Y, GUO P, et al. Understanding the influence of curdlan on the quality of frozen cooked noodles during the cooking process[J]. LWT-Food Science and Technology,2022,161:113382. doi: 10.1016/j.lwt.2022.113382
|
[30] |
TAO H, GUO L, QIN Z, et al. Textural characteristics of mixed gels improved by structural recombination and the formation of hydrogen bonds between curdlan and carrageenan[J]. Food Hydrocolloids,2022,129:107678. doi: 10.1016/j.foodhyd.2022.107678
|
[31] |
TAO H, WANG B, WEN H, et al. Improvement of the textural characteristics of curdlan gel by the formation of hydrogen bonds with erythritol[J]. Food Hydrocolloids,2021,117:106648. doi: 10.1016/j.foodhyd.2021.106648
|
[32] |
HUANG Y, CHEN H, ZHANG K, et al. Extraction, purification, structural characterization, and gut microbiota relationship of polysaccharides: A review[J]. International Journal of Biological Macromolecules,2022,213:967−986. doi: 10.1016/j.ijbiomac.2022.06.049
|
[33] |
ZHANG D, LIU J, CHENG H, et al. Interactions between polysaccharides and gut microbiota: A metabolomic and microbial review[J]. Food Research International,2022,160:111653. doi: 10.1016/j.foodres.2022.111653
|
[34] |
XU J, WANG R, ZHANG H, et al. In vitro assessment of prebiotic properties of oligosaccharides derived from four microbial polysaccharides[J]. LWT-Food Science and Technology,2021,147:111544. doi: 10.1016/j.lwt.2021.111544
|
[35] |
WATANABE K, YAMANO M, MASUJIMA Y, et al. Curdlan intake changes gut microbial composition, short-chain fatty acid production, and bile acid transformation in mice[J]. Biochemistry Biophys Reports,2021,27:101095. doi: 10.1016/j.bbrep.2021.101095
|
[36] |
ALJEWICZ M, FLORCZUK A, DĄBROWSKA A. Influence of β-glucan structures and contents on the functional properties of low-fat ice cream during storage[J]. Polish Journal of Food and Nutrition Sciences, 2020: 233-240.
|
[37] |
ZELECHOWSKA P, ROZALSKA S, WIKTORSKA M, et al. Curdlan stimulates tissue mast cells to synthesize pro-inflammatory mediators, generate ROS, and migrate via dectin-1 receptor[J]. Cellular Immunology,2020,351:104079. doi: 10.1016/j.cellimm.2020.104079
|
[38] |
KIM H S, PARK K H, LEE H K, et al. Curdlan activates dendritic cells through dectin-1 and toll-like receptor 4 signaling[J]. International Immunopharmacology,2016,39:71−78. doi: 10.1016/j.intimp.2016.07.013
|
[39] |
LUO L, ZHOU Q, HU Y, et al. Prompting immunostimulatory activity of curdlan with grafting methoxypolyethylene glycol[J]. International Journal of Biological Macromolecules,2022,222:1092−1100. doi: 10.1016/j.ijbiomac.2022.09.240
|
[40] |
黄小倩, 李佳琪, 孙家会, 等. 多糖的修饰及其改善乳化性能的研究进展[J]. 食品工业科技,2023,44(9):437−445. [HUANG X Q, LI J Q, SUN J H, et al. Research progress of modification methods for improving emulsifying properties of polysaccharides[J]. Science and Technology of Food Industry,2023,44(9):437−445. doi: 10.13386/j.issn1002-0306.2022060256
HUANG X Q, LI J Q, SUN J H, et al. Research progress of modification methods for improving emulsifying properties of polysaccharides[J]. Science and Technology of Food Industry, 2023, 44(9): 437-445 doi: 10.13386/j.issn1002-0306.2022060256
|
[41] |
CHEUNG Y C, YIN J, WU J Y. Effect of polysaccharide chain conformation on ultrasonic degradation of curdlan in alkaline solution[J]. Carbohydrate Polymers,2018,195:298−302. doi: 10.1016/j.carbpol.2018.04.118
|
[42] |
YAN J K, PEI J J, MA H L, et al. Effects of ultrasound on molecular properties, structure, chain conformation and degradation kinetics of carboxylic curdlan[J]. Carbohydrate Polymers,2015,121:64−70. doi: 10.1016/j.carbpol.2014.11.066
|
[43] |
GAO M, LI H, YANG T, et al. Production of prebiotic gellan oligosaccharides based on the irradiation treatment and acid hydrolysis of gellan gum[J]. Carbohydrate Polymers,2022,279:119007. doi: 10.1016/j.carbpol.2021.119007
|
[44] |
YANG B Y, MONTGOMERY R. Acylation of starch using trifluoroacetic anhydride promoter[J]. Starch-Stä rke,2006,58(10):520−526.
|
[45] |
MARUBAYASHI H, YUKINAKA K, ENOMOTO-ROGERS Y, et al. Curdlan ester derivatives: Synthesis, structure, and properties[J]. Carbohydrate Polymers,2014,103:427−433. doi: 10.1016/j.carbpol.2013.12.015
|
[46] |
JIA X, WANG C, DU X, et al. Specific hydrolysis of curdlan with a novel glycoside hydrolase family 128 beta-1,3-endoglucanase containing a carbohydrate-binding module[J]. Carbohydrate Polymers,2021,253:117276. doi: 10.1016/j.carbpol.2020.117276
|
[47] |
GABRIEL L, KOSCHELLA A, TIED A, et al. Sulfoethylation of polysaccharides-a comparative study[J]. Carbohydrate Polymers,2020,246:116533. doi: 10.1016/j.carbpol.2020.116533
|
[48] |
LI P, ZHANG X, CHENG Y, et al. Preparation and in vitro immunomodulatory effect of curdlan sulfate[J]. Carbohydrate Polymers,2014,102:852−861. doi: 10.1016/j.carbpol.2013.10.078
|
[49] |
VESSELLA G, ESPOSITO F, TRABONI S, et al. Exploiting diol reactivity for the access to unprecedented low molecular weight curdlan sulfate polysaccharides[J]. Carbohydrate Polymers,2021,269:118324. doi: 10.1016/j.carbpol.2021.118324
|
[50] |
HAN J, CAI J, BORJIHAN W, et al. Preparation of novel curdlan nanoparticles for intracellular siRNA delivery[J]. Carbohydrate Polymers,2015,117:324−330. doi: 10.1016/j.carbpol.2014.09.069
|
[51] |
SUN Y, LI Q, WEI S, et al. Preparation and luminescence performance of flexible films based on curdlan derivatives and europium (III) complexes as luminescent sensor for base/acid vapor[J]. Journal of Luminescence,2020,225:117241. doi: 10.1016/j.jlumin.2020.117241
|
[52] |
SUFLET D M, POPESCU I, PRISACARU A I, et al. Synthesis and characterization of curdlan-phosphorylated curdlan based hydrogels for drug release[J]. International Journal of Polymeric Materials and Polymeric Biomaterials,2020,70(12):870−879.
|
[53] |
MATSUMOTO Y, ENOMOTO Y, KIMURA S, et al. Highly stretchable curdlan hydrogels and mechanically strong stretched-dried-gel-films obtained by strain-induced crystallization[J]. Carbohydrate Polymers,2021,269:118312. doi: 10.1016/j.carbpol.2021.118312
|
[54] |
USOLTSEVA R V, BELIK A A, KUSAYKIN M I, et al. Laminarans and 1,3-beta-D-glucanases[J]. International Journal of Biological Macromolecules,2020,163:1010−1025. doi: 10.1016/j.ijbiomac.2020.07.034
|
[55] |
傅赟彬, 刘启顺, 李曙光, 等. 可德兰寡糖的制备及其组分分析[J]. 食品科学,2011,32(3):6−9. [FU Y B, LIU Q S, LI S G, et al. Preparation and component analysis of curdlan oligomers[J]. Food Science,2011,32(3):6−9.
FU Y B, LIU Q S, LI S G, et al. Preparation and component analysis of curdlan oligomers[J]. Food Science, 2011, 32(3): 6-9.
|
[56] |
GAO M, YANG G, LI F, et al. Efficient endo-beta-1,3-glucanase expression in Pichia pastoris for co-culture with Agrobacterium sp. for direct curdlan oligosaccharide production[J]. International Journal of Biological Macromolecules,2021,182:1611−1617. doi: 10.1016/j.ijbiomac.2021.05.142
|
[57] |
ZHANG L, HUANG Y K, YUE L N, et al. Variation of blending ratio and drying temperature optimize the physical properties and compatibility of HPMC/curdlan films[J]. Carbohydrate Polymers,2022,296:119951. doi: 10.1016/j.carbpol.2022.119951
|
[58] |
PRZEKORA A, PENOLAZZI L, KALISZ G, et al. Osteoclast-mediated acidic hydrolysis of thermally gelled curdlan component of the bone scaffolds: Is it possible?[J]. Carbohydrate Polymers,2022,295:119914. doi: 10.1016/j.carbpol.2022.119914
|
[59] |
YUNUS BASHA R, VENKATACHALAM G, SAMPATH KUMAR T S, et al. Dimethylaminoethyl modified curdlan nanoparticles for targeted siRNA delivery to macrophages[J]. Materials Science and Engineering:C,2020,108:110379. doi: 10.1016/j.msec.2019.110379
|
[60] |
MOHSIN A, ZAMAN W Q, GUO M, et al. Xanthan-curdlan nexus for synthesizing edible food packaging films[J]. International Journal of Biological Macromolecules,2020,162:43−49. doi: 10.1016/j.ijbiomac.2020.06.008
|
[61] |
KAI C, RUNMIAO T, GUOJUAN X, et al. Characterizations of konjac glucomannan/curdlan edible coatings and the preservation effect on cherry tomatoes[J]. International Journal of Biological Macromolecules,2023,232:123359. doi: 10.1016/j.ijbiomac.2023.123359
|
[62] |
ZHOU L, FU J, BIAN L, et al. Preparation of a novel curdlan/bacterial cellulose/cinnamon essential oil blending film for food packaging application[J]. International Journal of Biological Macromolecules,2022,212:211−219. doi: 10.1016/j.ijbiomac.2022.05.137
|
[63] |
ZHANG Y, ZHOU L, ZHANG C, et al. Preparation and characterization of curdlan/polyvinyl alcohol/thyme essential oil blending film and its application to chilled meat preservation[J]. Carbohydrate Polymers,2020,247:116670. doi: 10.1016/j.carbpol.2020.116670
|
[64] |
JIANG S, ZHAO S, JIA X, et al. Thermal gelling properties and structural properties of myofibrillar protein including thermo-reversible and thermo-irreversible curdlan gels[J]. Food Chemistry,2020,311:126018. doi: 10.1016/j.foodchem.2019.126018
|
[65] |
陈道春, 陆志娟, 齐自元. 预处理可得然胶对速冻牛肉饼食用品质的影响[J]. 食品科技,2022,47(9):88−93. [CHEN D C, LU Z J, QI Z Y. Effect of pretreated curdlan on the eating quality of quick-frozen beef patty[J]. Food Science and Technology,2022,47(9):88−93.
CHEN C D, LU J Z, QI Y Z. Effect of pretreated curdlan on the eating quality of quick-frozen beef patty[J]. Food Science and Technology, 2022, 47(9): 88-93.
|
[66] |
韩静文, 姜启兴, 许艳顺, 等. 可得然胶对高温杀菌鱼糜凝胶特性的影响[J]. 食品与机械,2018,34(4):37−41,98. [HAN J W, JIANG Q X, XU Y S, et al. Effects of curdlan on gel properties of high-temperature sterilization surimi[J]. Food and Machinery,2018,34(4):37−41,98.
HAN W J, JIANG X Q, XU S Y, et al. Effects of curdlan on gel properties of high-temperature sterilization surimi[J]. Food and Machinery, 2018, 34(4): 37-41, 98.
|
[67] |
LIU Y X, LIU X R, WANG L Y, et al. Study on the quality characteristics of hot-dry noodles by microbial polysaccharides[J]. Food Research International,2023,163:112200. doi: 10.1016/j.foodres.2022.112200
|
[68] |
ZHAO Y, FU R, LI J. Effects of the β-glucan, curdlan, on the fermentation performance, microstructure, rheological and textural properties of set yogurt[J]. LWT-Food Science and Technology,2020,128:109449. doi: 10.1016/j.lwt.2020.109449
|
[69] |
FLORCZUK A, DĄBROWSKA A, ALJEWICZ M. An evaluation of the effect of curdlan and scleroglucan on the functional properties of low-fat processed cheese spreads[J]. LWT-Food Science and Technology,2022,163:113564. doi: 10.1016/j.lwt.2022.113564
|
[70] |
CUI B, MAO Y, LIANG H, et al. Properties of soybean protein isolate/curdlan based emulsion gel for fat analogue: Comparison with pork backfat[J]. International Journal of Biological Macromolecules,2022,206:481−488. doi: 10.1016/j.ijbiomac.2022.02.157
|
[71] |
SHUAI J, CHUAN A C, XIU F X, et al. Enhancement of the textural and gel properties of frankfurters by adding thermo-reversible or thermo-irreversible curdlan gels[J]. Journal of food science,2019,84(5):1068−1077. doi: 10.1111/1750-3841.14595
|
[72] |
YE W, YAN B, PANG J, et al. A study of the synergistic Interaction of konjac glucomannan/curdlan blend systems under alkaline conditions[J]. Materials (Basel),2019,12(21):3543. doi: 10.3390/ma12213543
|
[73] |
ESSA M M, BISHIR M, BHAT A, et al. Functional foods and their impact on health[J]. Journal of Food Science and Technology,2021,60(3):1−15.
|
[74] |
XU X, PAN Y, LIU X, et al. Constructing selenium nanoparticles with enhanced storage stability and antioxidant activities via conformational transition of curdlan[J]. Foods (Basel, Switzerland),2023,12(3):563.
|
[75] |
MENGCHEN L, YUEMING W, DASHAN G, et al. Heat-triggered thermo-irreversible gelation of curdlan to control crystallisation and in vitro release of nobiletin[J]. International Journal of Food Science & Technology,2023,58(1):74−82.
|
[76] |
HUAN L, ZEXIN G, JINGJING X, et al. Encapsulation of polyphenols in pH-responsive micelles self-assembled from octenyl-succinylated curdlan oligosaccharide and its effect on the gut microbiota[J]. Colloids and Surfaces B: Biointerfaces,2022,219:112857. doi: 10.1016/j.colsurfb.2022.112857
|