SUN Dan, LI Huan, JIANG Yun, et al. The Structure, Function, Modification Methods and Application in Food Field of Curdlan[J]. Science and Technology of Food Industry, 2023, 44(20): 475−482. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022120186.
Citation: SUN Dan, LI Huan, JIANG Yun, et al. The Structure, Function, Modification Methods and Application in Food Field of Curdlan[J]. Science and Technology of Food Industry, 2023, 44(20): 475−482. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022120186.

The Structure, Function, Modification Methods and Application in Food Field of Curdlan

More Information
  • Received Date: December 20, 2022
  • Available Online: July 30, 2023
  • Curdlan is a natural exopolysaccharide produced by microorganisms without branching structure which is composed of glucose linked with β-1,3 glycosidic bonds, and used as a stabilizer, thickener in the food industry. Curdlan exhibits excellent functional properties such as gelling ability, anti-digestion and immunomodulatory effects, but the water-insoluble property of curdlan greatly limits its wide applications. Modification of curdlan can enhance its functional properties, especially the water-soluble ability of curdlan, which will expand its development and utilization in food area. In this review, the effects of modification methods on the functional properties of curdlan are discussed from three aspects: Physical modification, chemical modification and enzymatic modification. Moreover, this review highlights the recent research trends in curdlan applications in the food industry in recent years from four perspectives: Food packing materials, improving food texture, developing bionic food and functional food carrier. Overall, curdlan has great potential to be used in food industries. This review provides a reasonable reference for the further development and application of curdlan.
  • [1]
    梁赢. 低聚热凝胶的共培养发酵及其生物活性的研究[D]. 无锡: 江南大学, 2018

    LIANG Y. Oligo-curdlan production by co-cultivation fermentation and its biological activity[D]. Wuxi: Jiangnan University, 2018.
    [2]
    曾凡宾. 新型食品增稠剂中的新星—可得然胶[J]. 食品安全导刊,2013(9):48−49. [ZENG B F. Corderan gum, a new star in new food thickeners[J]. China Food Safety,2013(9):48−49.

    ZENG B F. Corderan gum, a new star in new food thickeners[J]. China Food Safety, 2013, (9): 48-49.
    [3]
    CAI Z, ZHANG H. The effect of carboxymethylation on the macromolecular conformation of the (1→3)-β-D-glucan of curdlan in water[J]. Carbohydrate Polymers,2021,272:118456. doi: 10.1016/j.carbpol.2021.118456
    [4]
    CHEN Y, WANG F. Review on the preparation, biological activities and applications of curdlan and its derivatives[J]. European Polymer Journal,2020,141:110096. doi: 10.1016/j.eurpolymj.2020.110096
    [5]
    HARADA T, YOSHIMURA T, HIDAKA H, et al. Production of a new acidic polysaccharide, succinoglucan by Alcaligenes faecalis var.myxogenes[J]. Agricultural and Biological Chemistry,1965,29(8):757−762. doi: 10.1080/00021369.1965.10858462
    [6]
    詹晓北, 韩杰, 朱莉. 一种新型的微生物多糖食品添加剂—热凝胶[J]. 冷饮与速冻食品工业,2001(1):27−30,32. [ZHAN X B, HAN J, ZHU L. New kind of microbial polysaccharide food additive-curdlan[J]. Beverage & Fast Frozen Food Industry,2001(1):27−30,32.

    ZHAN X B, HAN J, ZHU L. new kind of microbial polysaccharide food additive–curdlan[J]. Beverage & Fast Frozen Food Industry, 2001, (1): 27-30, 32.
    [7]
    俞珊, 段孟霞, 童彩玲, 等. 可得然胶功能性质及其在食品中的应用研究进展[J]. 食品科学,2022,43(19):277−284. [YU S, DUAN M X, TONG C L, et al. Research progress on functional properties of curdlan and its application in food[J]. Food Science,2022,43(19):277−284.

    YU S, DUAN X M, TONG C L, et al. Research progress on functional properties of curdlan and its application in food[J]. Food Science, 2022, 43(19): 277-284.
    [8]
    郭嘉, 冯杰, 谭贻, 等. 灵芝液态发酵胞内外多糖的研究进展[J]. 微生物学通报,2022,49(10):4337−4356. [GUO J, FENG J, TAN Y, et al. Liquid fermentation of Ganoderma Lingzhi for intracellular and extracellular polysaccharides: A review[J]. Microbiology China,2022,49(10):4337−4356.

    GUO J, FENG J, TAN Y, et al. Liquid fermentation of ganoderma lingzhi for intracellular and extracellular polysaccharides: A review[J]. Microbiology China, 2022, 49(10): 4337-4356.
    [9]
    李敏, 朱莉, 詹晓北. 以甘油为碳源生产低分子质量β-1, 3-葡聚糖的发酵工艺[J]. 食品与发酵工业,2022,48(17):21−28. [LI M, ZHU L, ZHAN X B. Fermentation process foe preoaration of low-molecular-weight β-1,3-glucan using glycerol as carbon source[J]. Food and Fermentation Industries,2022,48(17):21−28.

    LI M, ZHU L, ZHAN X B. Fermentation process foe preoaration of low-molecular-weight β-1, 3-glucan using glycerol as carbon source[J]. Food and Fermentation Industries, 2022, 48(17): 21-28.
    [10]
    詹晓北, 韩杰, 李珍雨, 等. 一株粪产碱杆菌(Alcaligenes faecalis)产热凝胶的发酵条件[J]. 无锡轻工大学学报,2001(4):347−350. [ZHAN X B, HAN J, LI Z Y, et al. The fermentation conditions of curdlan by Alcaligenes faecalis strain[J]. Journal of Wuxi University of Light Industry,2001(4):347−350.

    ZHAN X B, HAN J, LI Z Y, et al. The fermentation conditions of curdlan by Alcaligenes faecalis strain[J]. Journal of Wuxi University of Light Industry, 2001, (4): 347-350.
    [11]
    孙永生, 王磊, 詹晓北, 等. 氮源NH4Cl浓度对粪产碱杆菌发酵生产热凝胶的影响[J]. 生物工程学报,2005(2):328−331. [SUN Y S, WANG L, ZHAN X B, et al. Influence of nitrogen source NH4Cl concentration on curdlan production in Alcaligenes faecalis[J]. Chinese Journal of Biotechnology,2005(2):328−331.

    SUN Y S, WANG L, ZHAN X B, et al. Influence of nitrogen source NH4Cl concentration on curdlan production in Alcaligenes faecalis[J]. Chinese Journal of Biotechnology, 2005, (2): 328-331.
    [12]
    史其峰, 詹晓北, 郑志永. 粪产碱杆菌在不同底物限制性条件下连续培养[J]. 食品与生物技术学报,2008(5):67−72. [SHI Q F, ZHAN X B, ZHENG Z Y. Continuous cultivation of Alcaligenes faecalis in medium containing different sole limited substrates[J]. Journal of Food Science and Biotechnology,2008(5):67−72.

    SHI Q F, ZHAN X B, ZHENG Z Y. Continuous cultivation of Alcaligenes faecalis in medium containing different sole limited substrates[J]. Journal of Food Science and Biotechnology, 2008, (5): 67-72.
    [13]
    于丽珺, 路敬, 吴剑荣, 等. 低聚磷酸盐对粪产碱杆菌合成热凝胶的影响[J]. 微生物学通报,2010,37(5):664−670. [YU L J, LU J, WU J R, et al. Influence of low-polyphosphates on curdlan production by Alcaligenes faecalis var. myxogene[J]. Microbiology China,2010,37(5):664−670.

    YU L J, LU J, WU J R, et al. Influence of low-polyphosphates on curdlan production by Alcaligenes faecalis var. myxogene[J]. Microbiology China, 2010, 37(5): 664-670.
    [14]
    路敬, 吴剑荣, 于丽珺, 等. 荧光定量PCR分析土壤杆菌及其ntrC突变株对氮源的应答反应[J]. 食品与生物技术学报,2012,31(12):1282−1288. [LU J, WU J R, YU L J, et al. Application of real-time pcr to study the responses of Agrobacterium sp. and the mutant ntrC to nitrogen availablility[J]. Journal of Food Science and Biotechnology,2012,31(12):1282−1288.

    LU J, WU J R, YU L J, et al. Application of real-time pcr to study the responses of Agrobacterium sp. and the mutant ntrC to nitrogen availablility[J]. Journal of Food Science and Biotechnology, 2012, 31(12): 1282-1288.
    [15]
    马立伟. 微生物多糖热凝胶高生产强度发酵工艺研究[D]. 无锡: 江南大学, 2008

    MA L W. Study on the high productivity fermentation technology of an extracellular microbial polysaccharide-curdlan[D]. Wuxi: Jiangnan University, 2008.
    [16]
    ZHANG W, GAO H, HUANG Y, et al. Glutamine synthetase gene glnA plays a vital role in curdlan biosynthesis of Agrobacterium sp. CGMCC 11546[J]. International Journal of Biological Macromolecules, 2020, 165(Pt A): 222-230.
    [17]
    GAO H, XIE F, ZHANG W, et al. Characterization and improvement of curdlan produced by a high-yield mutant of Agrobacterium sp. ATCC 31749 based on whole-genome analysis[J]. Carbohydrate Polymers,2020,245:116486. doi: 10.1016/j.carbpol.2020.116486
    [18]
    WEST T P. Production of the polysaccharide curdlan by Agrobacterium species on processing coproducts and plant lignocellulosic hydrolysates[J]. Fermentation,2020,6(1):16. doi: 10.3390/fermentation6010016
    [19]
    GAO M, LIU Z, ZHAO Z, et al. Exopolysaccharide synthesis repressor genes (exoR and exoX) related to curdlan biosynthesis by Agrobacterium sp[J]. International Journal of Biological Macromolecules,2022,205:193−202. doi: 10.1016/j.ijbiomac.2022.02.063
    [20]
    董学前. 微生物发酵生产可得然胶的研究[D]. 济南: 山东大学, 2011

    DONG X Q. Study on curdlan production by microbial fermentatiom[D]. Jinan: Shangdong University, 2011.
    [21]
    QIN Z, YANG D, YOU X, et al. The recognition mechanism of triple-helical beta-1, 3-glucan by a beta-1, 3-glucanase[J]. Chemical communications (Cambridge, England),2017,53(67):9368−9371. doi: 10.1039/C7CC03330C
    [22]
    YAN X, LIU B, RU G, et al. Preparation and characterization of curdlan with unique single-helical conformation and its assembly with Congo red[J]. Carbohydrate Polymers,2021,263:117985. doi: 10.1016/j.carbpol.2021.117985
    [23]
    YAN J K, CAI W D, WANG C, et al. Macromolecular behavior, structural characteristics and rheological properties of alkali-neutralization curdlan at different concentrations[J]. Food Hydrocolloids,2020,105(C):105785.
    [24]
    XU X, WANG Q, XUE S, et al. Effect of alkali-neutralization treatment on triple-helical aggregates and independent triple helices of curdlan[J]. Carbohydrate Polymers,2021,259:117775. doi: 10.1016/j.carbpol.2021.117775
    [25]
    ZHANG H, NISHINARI K. Characterization of the conformation and comparison of shear and extensional properties of curdlan in DMSO[J]. Food Hydrocolloids,2008,23(6):1570−1578.
    [26]
    WU M, CHEN X, XU J, et al. Freeze-thaw and solvent-exchange strategy to generate physically cross-linked organogels and hydrogels of curdlan with tunable mechanical properties[J]. Carbohydrate Polymers,2022,278:119003. doi: 10.1016/j.carbpol.2021.119003
    [27]
    RUORAN Z, J E K. Properties, chemistry, and applications of the bioactive polysaccharide curdlan[J]. Biomacromolecules,2014,15(4):1079−1096. doi: 10.1021/bm500038g
    [28]
    岳莉娜. 羟丙基甲基纤维素/可得然胶共混体系的微观结构和性能研究[D]. 扬州: 扬州大学, 2021

    YUE L N. Microstructure and properties of hydroxypropyl methylcellulose/curdlan blends[D]. Yangzhou: Yangzhou University, 2021.
    [29]
    LIU H, LIANG Y, GUO P, et al. Understanding the influence of curdlan on the quality of frozen cooked noodles during the cooking process[J]. LWT-Food Science and Technology,2022,161:113382. doi: 10.1016/j.lwt.2022.113382
    [30]
    TAO H, GUO L, QIN Z, et al. Textural characteristics of mixed gels improved by structural recombination and the formation of hydrogen bonds between curdlan and carrageenan[J]. Food Hydrocolloids,2022,129:107678. doi: 10.1016/j.foodhyd.2022.107678
    [31]
    TAO H, WANG B, WEN H, et al. Improvement of the textural characteristics of curdlan gel by the formation of hydrogen bonds with erythritol[J]. Food Hydrocolloids,2021,117:106648. doi: 10.1016/j.foodhyd.2021.106648
    [32]
    HUANG Y, CHEN H, ZHANG K, et al. Extraction, purification, structural characterization, and gut microbiota relationship of polysaccharides: A review[J]. International Journal of Biological Macromolecules,2022,213:967−986. doi: 10.1016/j.ijbiomac.2022.06.049
    [33]
    ZHANG D, LIU J, CHENG H, et al. Interactions between polysaccharides and gut microbiota: A metabolomic and microbial review[J]. Food Research International,2022,160:111653. doi: 10.1016/j.foodres.2022.111653
    [34]
    XU J, WANG R, ZHANG H, et al. In vitro assessment of prebiotic properties of oligosaccharides derived from four microbial polysaccharides[J]. LWT-Food Science and Technology,2021,147:111544. doi: 10.1016/j.lwt.2021.111544
    [35]
    WATANABE K, YAMANO M, MASUJIMA Y, et al. Curdlan intake changes gut microbial composition, short-chain fatty acid production, and bile acid transformation in mice[J]. Biochemistry Biophys Reports,2021,27:101095. doi: 10.1016/j.bbrep.2021.101095
    [36]
    ALJEWICZ M, FLORCZUK A, DĄBROWSKA A. Influence of β-glucan structures and contents on the functional properties of low-fat ice cream during storage[J]. Polish Journal of Food and Nutrition Sciences, 2020: 233-240.
    [37]
    ZELECHOWSKA P, ROZALSKA S, WIKTORSKA M, et al. Curdlan stimulates tissue mast cells to synthesize pro-inflammatory mediators, generate ROS, and migrate via dectin-1 receptor[J]. Cellular Immunology,2020,351:104079. doi: 10.1016/j.cellimm.2020.104079
    [38]
    KIM H S, PARK K H, LEE H K, et al. Curdlan activates dendritic cells through dectin-1 and toll-like receptor 4 signaling[J]. International Immunopharmacology,2016,39:71−78. doi: 10.1016/j.intimp.2016.07.013
    [39]
    LUO L, ZHOU Q, HU Y, et al. Prompting immunostimulatory activity of curdlan with grafting methoxypolyethylene glycol[J]. International Journal of Biological Macromolecules,2022,222:1092−1100. doi: 10.1016/j.ijbiomac.2022.09.240
    [40]
    黄小倩, 李佳琪, 孙家会, 等. 多糖的修饰及其改善乳化性能的研究进展[J]. 食品工业科技,2023,44(9):437−445. [HUANG X Q, LI J Q, SUN J H, et al. Research progress of modification methods for improving emulsifying properties of polysaccharides[J]. Science and Technology of Food Industry,2023,44(9):437−445. doi: 10.13386/j.issn1002-0306.2022060256

    HUANG X Q, LI J Q, SUN J H, et al. Research progress of modification methods for improving emulsifying properties of polysaccharides[J]. Science and Technology of Food Industry, 2023, 44(9): 437-445 doi: 10.13386/j.issn1002-0306.2022060256
    [41]
    CHEUNG Y C, YIN J, WU J Y. Effect of polysaccharide chain conformation on ultrasonic degradation of curdlan in alkaline solution[J]. Carbohydrate Polymers,2018,195:298−302. doi: 10.1016/j.carbpol.2018.04.118
    [42]
    YAN J K, PEI J J, MA H L, et al. Effects of ultrasound on molecular properties, structure, chain conformation and degradation kinetics of carboxylic curdlan[J]. Carbohydrate Polymers,2015,121:64−70. doi: 10.1016/j.carbpol.2014.11.066
    [43]
    GAO M, LI H, YANG T, et al. Production of prebiotic gellan oligosaccharides based on the irradiation treatment and acid hydrolysis of gellan gum[J]. Carbohydrate Polymers,2022,279:119007. doi: 10.1016/j.carbpol.2021.119007
    [44]
    YANG B Y, MONTGOMERY R. Acylation of starch using trifluoroacetic anhydride promoter[J]. Starch-Stä rke,2006,58(10):520−526.
    [45]
    MARUBAYASHI H, YUKINAKA K, ENOMOTO-ROGERS Y, et al. Curdlan ester derivatives: Synthesis, structure, and properties[J]. Carbohydrate Polymers,2014,103:427−433. doi: 10.1016/j.carbpol.2013.12.015
    [46]
    JIA X, WANG C, DU X, et al. Specific hydrolysis of curdlan with a novel glycoside hydrolase family 128 beta-1,3-endoglucanase containing a carbohydrate-binding module[J]. Carbohydrate Polymers,2021,253:117276. doi: 10.1016/j.carbpol.2020.117276
    [47]
    GABRIEL L, KOSCHELLA A, TIED A, et al. Sulfoethylation of polysaccharides-a comparative study[J]. Carbohydrate Polymers,2020,246:116533. doi: 10.1016/j.carbpol.2020.116533
    [48]
    LI P, ZHANG X, CHENG Y, et al. Preparation and in vitro immunomodulatory effect of curdlan sulfate[J]. Carbohydrate Polymers,2014,102:852−861. doi: 10.1016/j.carbpol.2013.10.078
    [49]
    VESSELLA G, ESPOSITO F, TRABONI S, et al. Exploiting diol reactivity for the access to unprecedented low molecular weight curdlan sulfate polysaccharides[J]. Carbohydrate Polymers,2021,269:118324. doi: 10.1016/j.carbpol.2021.118324
    [50]
    HAN J, CAI J, BORJIHAN W, et al. Preparation of novel curdlan nanoparticles for intracellular siRNA delivery[J]. Carbohydrate Polymers,2015,117:324−330. doi: 10.1016/j.carbpol.2014.09.069
    [51]
    SUN Y, LI Q, WEI S, et al. Preparation and luminescence performance of flexible films based on curdlan derivatives and europium (III) complexes as luminescent sensor for base/acid vapor[J]. Journal of Luminescence,2020,225:117241. doi: 10.1016/j.jlumin.2020.117241
    [52]
    SUFLET D M, POPESCU I, PRISACARU A I, et al. Synthesis and characterization of curdlan-phosphorylated curdlan based hydrogels for drug release[J]. International Journal of Polymeric Materials and Polymeric Biomaterials,2020,70(12):870−879.
    [53]
    MATSUMOTO Y, ENOMOTO Y, KIMURA S, et al. Highly stretchable curdlan hydrogels and mechanically strong stretched-dried-gel-films obtained by strain-induced crystallization[J]. Carbohydrate Polymers,2021,269:118312. doi: 10.1016/j.carbpol.2021.118312
    [54]
    USOLTSEVA R V, BELIK A A, KUSAYKIN M I, et al. Laminarans and 1,3-beta-D-glucanases[J]. International Journal of Biological Macromolecules,2020,163:1010−1025. doi: 10.1016/j.ijbiomac.2020.07.034
    [55]
    傅赟彬, 刘启顺, 李曙光, 等. 可德兰寡糖的制备及其组分分析[J]. 食品科学,2011,32(3):6−9. [FU Y B, LIU Q S, LI S G, et al. Preparation and component analysis of curdlan oligomers[J]. Food Science,2011,32(3):6−9.

    FU Y B, LIU Q S, LI S G, et al. Preparation and component analysis of curdlan oligomers[J]. Food Science, 2011, 32(3): 6-9.
    [56]
    GAO M, YANG G, LI F, et al. Efficient endo-beta-1,3-glucanase expression in Pichia pastoris for co-culture with Agrobacterium sp. for direct curdlan oligosaccharide production[J]. International Journal of Biological Macromolecules,2021,182:1611−1617. doi: 10.1016/j.ijbiomac.2021.05.142
    [57]
    ZHANG L, HUANG Y K, YUE L N, et al. Variation of blending ratio and drying temperature optimize the physical properties and compatibility of HPMC/curdlan films[J]. Carbohydrate Polymers,2022,296:119951. doi: 10.1016/j.carbpol.2022.119951
    [58]
    PRZEKORA A, PENOLAZZI L, KALISZ G, et al. Osteoclast-mediated acidic hydrolysis of thermally gelled curdlan component of the bone scaffolds: Is it possible?[J]. Carbohydrate Polymers,2022,295:119914. doi: 10.1016/j.carbpol.2022.119914
    [59]
    YUNUS BASHA R, VENKATACHALAM G, SAMPATH KUMAR T S, et al. Dimethylaminoethyl modified curdlan nanoparticles for targeted siRNA delivery to macrophages[J]. Materials Science and Engineering:C,2020,108:110379. doi: 10.1016/j.msec.2019.110379
    [60]
    MOHSIN A, ZAMAN W Q, GUO M, et al. Xanthan-curdlan nexus for synthesizing edible food packaging films[J]. International Journal of Biological Macromolecules,2020,162:43−49. doi: 10.1016/j.ijbiomac.2020.06.008
    [61]
    KAI C, RUNMIAO T, GUOJUAN X, et al. Characterizations of konjac glucomannan/curdlan edible coatings and the preservation effect on cherry tomatoes[J]. International Journal of Biological Macromolecules,2023,232:123359. doi: 10.1016/j.ijbiomac.2023.123359
    [62]
    ZHOU L, FU J, BIAN L, et al. Preparation of a novel curdlan/bacterial cellulose/cinnamon essential oil blending film for food packaging application[J]. International Journal of Biological Macromolecules,2022,212:211−219. doi: 10.1016/j.ijbiomac.2022.05.137
    [63]
    ZHANG Y, ZHOU L, ZHANG C, et al. Preparation and characterization of curdlan/polyvinyl alcohol/thyme essential oil blending film and its application to chilled meat preservation[J]. Carbohydrate Polymers,2020,247:116670. doi: 10.1016/j.carbpol.2020.116670
    [64]
    JIANG S, ZHAO S, JIA X, et al. Thermal gelling properties and structural properties of myofibrillar protein including thermo-reversible and thermo-irreversible curdlan gels[J]. Food Chemistry,2020,311:126018. doi: 10.1016/j.foodchem.2019.126018
    [65]
    陈道春, 陆志娟, 齐自元. 预处理可得然胶对速冻牛肉饼食用品质的影响[J]. 食品科技,2022,47(9):88−93. [CHEN D C, LU Z J, QI Z Y. Effect of pretreated curdlan on the eating quality of quick-frozen beef patty[J]. Food Science and Technology,2022,47(9):88−93.

    CHEN C D, LU J Z, QI Y Z. Effect of pretreated curdlan on the eating quality of quick-frozen beef patty[J]. Food Science and Technology, 2022, 47(9): 88-93.
    [66]
    韩静文, 姜启兴, 许艳顺, 等. 可得然胶对高温杀菌鱼糜凝胶特性的影响[J]. 食品与机械,2018,34(4):37−41,98. [HAN J W, JIANG Q X, XU Y S, et al. Effects of curdlan on gel properties of high-temperature sterilization surimi[J]. Food and Machinery,2018,34(4):37−41,98.

    HAN W J, JIANG X Q, XU S Y, et al. Effects of curdlan on gel properties of high-temperature sterilization surimi[J]. Food and Machinery, 2018, 34(4): 37-41, 98.
    [67]
    LIU Y X, LIU X R, WANG L Y, et al. Study on the quality characteristics of hot-dry noodles by microbial polysaccharides[J]. Food Research International,2023,163:112200. doi: 10.1016/j.foodres.2022.112200
    [68]
    ZHAO Y, FU R, LI J. Effects of the β-glucan, curdlan, on the fermentation performance, microstructure, rheological and textural properties of set yogurt[J]. LWT-Food Science and Technology,2020,128:109449. doi: 10.1016/j.lwt.2020.109449
    [69]
    FLORCZUK A, DĄBROWSKA A, ALJEWICZ M. An evaluation of the effect of curdlan and scleroglucan on the functional properties of low-fat processed cheese spreads[J]. LWT-Food Science and Technology,2022,163:113564. doi: 10.1016/j.lwt.2022.113564
    [70]
    CUI B, MAO Y, LIANG H, et al. Properties of soybean protein isolate/curdlan based emulsion gel for fat analogue: Comparison with pork backfat[J]. International Journal of Biological Macromolecules,2022,206:481−488. doi: 10.1016/j.ijbiomac.2022.02.157
    [71]
    SHUAI J, CHUAN A C, XIU F X, et al. Enhancement of the textural and gel properties of frankfurters by adding thermo-reversible or thermo-irreversible curdlan gels[J]. Journal of food science,2019,84(5):1068−1077. doi: 10.1111/1750-3841.14595
    [72]
    YE W, YAN B, PANG J, et al. A study of the synergistic Interaction of konjac glucomannan/curdlan blend systems under alkaline conditions[J]. Materials (Basel),2019,12(21):3543. doi: 10.3390/ma12213543
    [73]
    ESSA M M, BISHIR M, BHAT A, et al. Functional foods and their impact on health[J]. Journal of Food Science and Technology,2021,60(3):1−15.
    [74]
    XU X, PAN Y, LIU X, et al. Constructing selenium nanoparticles with enhanced storage stability and antioxidant activities via conformational transition of curdlan[J]. Foods (Basel, Switzerland),2023,12(3):563.
    [75]
    MENGCHEN L, YUEMING W, DASHAN G, et al. Heat-triggered thermo-irreversible gelation of curdlan to control crystallisation and in vitro release of nobiletin[J]. International Journal of Food Science & Technology,2023,58(1):74−82.
    [76]
    HUAN L, ZEXIN G, JINGJING X, et al. Encapsulation of polyphenols in pH-responsive micelles self-assembled from octenyl-succinylated curdlan oligosaccharide and its effect on the gut microbiota[J]. Colloids and Surfaces B: Biointerfaces,2022,219:112857. doi: 10.1016/j.colsurfb.2022.112857

Catalog

    Article Metrics

    Article views (267) PDF downloads (17) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return