LIN Yamei, ZHI Hongxin, SUN Jixiang, et al. Optimization of the Ultrasonic Extraction Process of Acanthopanax senticosus Multiple Components Based on a Coupling Methodology of Analytic Hierarchy Process and Entropy Weight Method[J]. Science and Technology of Food Industry, 2023, 44(20): 239−249. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022120137.
Citation: LIN Yamei, ZHI Hongxin, SUN Jixiang, et al. Optimization of the Ultrasonic Extraction Process of Acanthopanax senticosus Multiple Components Based on a Coupling Methodology of Analytic Hierarchy Process and Entropy Weight Method[J]. Science and Technology of Food Industry, 2023, 44(20): 239−249. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022120137.

Optimization of the Ultrasonic Extraction Process of Acanthopanax senticosus Multiple Components Based on a Coupling Methodology of Analytic Hierarchy Process and Entropy Weight Method

More Information
  • Received Date: December 17, 2022
  • Available Online: August 07, 2023
  • The multi-component ultrasonic extraction process of Acanthopanax senticosus was optimized via ultra-high performance liquid chromatography-mass spectrometry (UPLC-MS/MS) quantitative method and the multi-index comprehensive evaluation method. An UPLC-MS/MS method for the simultaneous quantitative determination of multiple components (chlorogenic acid, syringin, eleutheroside E, isofraxidin, caffeic acid and sesamin) in rhizome of Acanthopanax senticosus was developed. Then, the analytic hierarchy process (AHP) and entropy weight method (EWM) were combined to establish a multi-index comprehensive evaluation method (AHP-EWM method). Finally, the multi-component ultrasonic extraction process of Acanthopanax senticosus was optimized by single factor combined with response surface methodology (RSM) based on Box-Behnken design (BBD). The results revealed that the optimal process of ultrasonic extraction of multiple components of Acanthopanax senticosus obtained by RSM optimization was as follows: Ultrasonic power 780 W, ultrasonic time 17.5 min, ethanol volume fraction 57%, solid-liquid ratio 1:40 g:mL, raw material particle size 80 mesh. Therefore, the contents of chlorogenic acid, syringin, eleutheroside E, isofraxidin, caffeic acid and sesamin in rhizome of Acanthopanax senticosus were 2235.841±12.17, 517.959±6.09, 861.247±5.30, 66.657±1.22, 45.745±0.77, 99.355±0.69 μg/g, respectively. The comprehensive score based on the AHP-EWM method was 95.45±0.39, which was close to the predicted theoretical value. The effective development of quantitative analysis method and efficient extraction technology of Acanthopanax senticosus have laid a foundation for its resource utilization and pharmacodynamic basic research.
  • [1]
    WANG X, HAI C X, LIANG X, et al. The protective effects of Acanthopanax senticosus harms aqueous extracts against oxidative stress: Role of Nrf2 and antioxidant enzymes[J]. Journal of Ethnopharmacology,2010,127(2):424−432. doi: 10.1016/j.jep.2009.10.022
    [2]
    JIA A L, ZHANG Y H, GAO H, et al. A review of Acanthopanax senticosus (Rupr and Maxim.) harms: From ethnopharmacological use to modern application[J]. Journal of Ethnopharmacology,2021,268:113586. doi: 10.1016/j.jep.2020.113586
    [3]
    NISHIDA M, KONDO M, SHIMIZU T, et al. Antihyperlipidemic effect of Acanthopanax senticosus (Rupr. et Maxim) harms leaves in high-fat-diet fed mice[J]. Journal of the Science of Food and Agriculture,2016,96(11):3717−3722. doi: 10.1002/jsfa.7557
    [4]
    LAU K M, YUE G G, CHAN Y Y, et al. A review on the immunomodulatory activity of Acanthopanax senticosus and its active components[J]. Chinese Medicine,2019,14(1):1−6. doi: 10.1186/s13020-018-0223-8
    [5]
    MAHADEVA R U, THANT Z, SUNDARAM C S, et al. Effect of syringin (eleutheroside B) on the physiological and hematological parameters in STZ induced Type II diabetic Wistar rats[J]. Pakistan Journal of Pharmaceutical Sciences,2020,33(6):2601−2606.
    [6]
    LIU K Y, WU Y C, LIU I M, et al. Release of acetylcholine by syringin, an active principle of Eleutherococcus senticosus, to raise insulin secretion in Wistar rats[J]. Neuroscience Letters,2008,434(2):195−199. doi: 10.1016/j.neulet.2008.01.054
    [7]
    ZHANG P P, GUO Z F, ZHANG P H, et al. Eleutheroside B, a selective late sodium current inhibitor, suppresses atrial fibrillation induced by sea anemone toxin II in rabbit hearts[J]. Acta Pharmacologica Sinica,2020,42(2):209−217.
    [8]
    JAE Y C, KWON H N, AE R K, et al. In-vitro and in-vivo immunomodulatory effects of syringin[J]. Journal of Pharmacy and Pharmacology,2010,53(9):1287−1294. doi: 10.1211/0022357011776577
    [9]
    HE C Y, CHEN X H, ZHAO C Y, et al. Eleutheroside E ameliorates arthritis severity in collagen-induced arthritis mice model by suppressing inflammatory cytokine release[J]. Inflammation,2014,37(5):1533−1543. doi: 10.1007/s10753-014-9880-7
    [10]
    AHN J, UM M Y, LEE H, et al. Eleutheroside E, An active component of Eleutherococcus senticosus, ameliorates insulin resistance in type 2 diabetic db/db mice[J]. Evidence-Based Complementary and Alternative Medicine,2013,2013:934183.
    [11]
    LIU Z, GAO W W, XU Y Q. Eleutheroside E alleviates cerebral ischemia-reperfusion injury in a 5-hydroxytryptamine receptor 2C (Htr2c)-dependent manner in rats[J]. Bioengineered,2022,13(5):11718−11731. doi: 10.1080/21655979.2022.2071009
    [12]
    HUANG L Z, WEI L, ZHAO H F, et al. The effect of Eleutheroside E on behavioral alterations in murine sleep deprivation stress model[J]. European Journal of Pharmacology,2011,658(2−3):150−155. doi: 10.1016/j.ejphar.2011.02.036
    [13]
    YAMAZAKI T, TOKIWA T. Isofraxidin, a coumarin component from Acanthopanax senticosus, inhibits matrix metalloproteinase-7 expression and cell invasion of human hepatoma cells[J]. Biological & Pharmaceutical Bulletin,2010,33(10):1716−1722.
    [14]
    LIN J, LI X B, QI W H, et al. Isofraxidin inhibits interleukin-1β induced inflammatory response in human osteoarthritis chondrocytes[J]. International Immunopharmacology,2018,64:238−245. doi: 10.1016/j.intimp.2018.09.003
    [15]
    FUJIKAWA T, KANADA N, SHIMADA A, et al. Effect of sesamin in Acanthopanax senticosus harms on behavioral dysfunction in rotenone-induced parkinsonian rats[J]. Biological and Pharmaceutical Bulletin,2005,28(1):169−172. doi: 10.1248/bpb.28.169
    [16]
    LIU R X, CHU X L, SU J Q, et al. Enzyme-assisted ultrasonic extraction of total flavonoids from Acanthopanax senticosus and their enrichment and antioxidant properties[J]. Processes,2021,9(10):1708. doi: 10.3390/pr9101708
    [17]
    涂祥婷, 杨鸿波, 郭峰, 等. 超高效液相色谱-高分辨质谱法同时测定鱼肉中16种全氟烷基化合物[J]. 分析化学,2021,49(4):528−537. [XU X T, YANG H B, GUO F, et al. Simultaneous determination of 16 kinds of perfluoroalkyl substances in fish muscle by ultra high performance liquid chromatography-high resolution mass spectrometry[J]. Chinese Journal of Analytical Chemistry,2021,49(4):528−537.

    XU X T, YANG H B, GUO F, et al. Simultaneous determination of 16 kinds of perfluoroalkyl substances in fish muscle by ultra high performance liquid chromatography-high resolution mass spectrometry[J]. Chinese Journal of Analytical Chemistry, 2021, 49(4): 528-537.
    [18]
    LIU S P, AN J T, WANG R, et al. Simultaneous quantification of five bioactive components of Acanthopanax senticosus and its extract by ultra performance liquid chromatography with electrospray ionization time-of-flight mass spectrometry[J]. Molecules,2012,17(7):7903−13. doi: 10.3390/molecules17077903
    [19]
    LI L L, WANG Y, XIU Y, et al. Chemical differentiation and quantitative analysis of different types of Panax Genus stem-leaf based on a UPLC-Q-Exactive orbitrap/MS combined with multivariate statistical analysis approach[J]. Journal of Analytical Methods in Chemistry, 2018, 2018.
    [20]
    YANG X D, BAI Z F, ZHANG D W, et al. Enrichment of flavonoid-rich extract from Bidens bipinnata L. by macroporous resin using response surface methodology, UHPLC-Q-TOF MS/MS-assisted characterization and comprehensive evaluation of its bioactivities by analytical hierarchy process[J]. Biomedical Chromatography:BMC,2020,34(11):e4933.
    [21]
    CUI H, LU T H, WANG M X, et al. Flavonoids from Morus alba L. leaves: Optimization of extraction by response surface methodology and comprehensive evaluation of their antioxidant, antimicrobial, and Inhibition of α-Amylase activities through analytical hierarchy processhierarchy process[J]. Molecules,2019,24(13):2398. doi: 10.3390/molecules24132398
    [22]
    冯利梅, 陈艳琰, 乐世俊, 等. 基于层次分析-熵权法的中药质量标志物量化辨识方法研究-以芍药甘草汤为例[J]. 药学学报,2021,56(1):296−305. [FENG L M, CHEN Y Y, YUE S J, et al. Quantitative identification of TCM Q-markers based on analytical hierarchy and the entropy weight comprehensive method by taking Shaoyao Gancao decoction as an example[J]. Acta Pharmaceutica Sinica,2021,56(1):296−305.

    FENG L M, CHEN Y Y, YUE S J, et al. Quantitative identification of TCM Q-markers based on analytical hierarchy and the entropy weight comprehensive method by taking Shaoyao Gancao decoction as an example[J]. Acta Pharmaceutica Sinica, 2021, 56(1): 296-305.
    [23]
    XU M Y, WANG Y W, WANG Q B, et al. Targeted development-dependent metabolomics profiling of bioactive compounds in Acanthopanax senticosus by UPLC-ESI-MS[J]. Natural Product Communications,2020,15(4):1−11.
    [24]
    吴蓓, 李军茂, 黄小方, 等. UHPLC-MS/MS法同时测定杏香兔耳风中13种成分的含量[J]. 中草药,2020,51(15):4025−4031. [WU B, LI J M, HUANG X F, et al. Simultaneous determination of thirteen components in Ainsliaea fragrans by UHPLC-MS/MS[J]. Chinese Traditional and Herbal Drugs,2020,51(15):4025−4031. doi: 10.7501/j.issn.0253-2670.2020.15.023

    WU B, LI J M, HUANG X F, et al. Simultaneous determination of thirteen components in Ainsliaea fragrans by UHPLC-MS/MS[J]. Chinese Traditional and Herbal Drugs, 2020, 51(15): 4025-4031. doi: 10.7501/j.issn.0253-2670.2020.15.023
    [25]
    肖伟敏, 王奇, 董珊, 等. UPLC-MS/MS法测定食品中的4种木酚素[J]. 食品工业,2020,41(4):294−298. [XIAO W M, WANG Q, DONG S, et al. Determination of four lignans in foods by UPLC-MS/MS[J]. The Food Industry,2020,41(4):294−298.

    XIAO W M, WANG Q, DONG S, et al. Determination of four lignans in foods by UPLC-MS/MS[J]. The Food Industry, 2020, 41(4): 294-298.
    [26]
    DU Y, HUANG P C, JIN W F, et al. Optimization of extraction or purification process of multiple components from natural products: entropy weight method combined with Plackett–Burman design and central composite design[J]. Molecules,2021,26(18):5572−5572. doi: 10.3390/molecules26185572
    [27]
    ZHAO X M, ZHU M D, REN X, et al. A new technique for determining micronutrient nutritional quality in fruits and vegetables based on the entropy weight method and fuzzy recognition method[J]. Foods,2022,11(23):3844. doi: 10.3390/foods11233844
    [28]
    王唱唱, 左蓓磊, 彭新, 等. 基于熵权法结合层次分析法和反向传播神经网络优选大皂角油制工艺[J]. 中草药,2022,53(15):4687−4697. [WANG C C, ZUO B B, PEN X, et al. Optimization of Gleditsiae sinensis fructus oil processing technology based on entropy method combined with analytic hierarchy process and BP neural network[J]. Chinese Traditional and Herbal Drugs,2022,53(15):4687−4697.

    WANG C C, ZUO B B, PEN X, et al. Optimization of Gleditsiae Sinensis Fructus oil processing technology based on entropy method combined with analytic hierarchy process and BP neural network[J]. Chinese Traditional and Herbal Drugs 2022, 53(15): 4687-4697.
    [29]
    祝子喻, 谢雨欣, 俞月婷, 等. 基于熵权-层次分析法及反向传播神经网络多指标优化地黄水提物提取工艺[J]. 食品工业科技,2022,43(19):264−272. [ZHU Z Y, XIE Y X, YU Y T, et al. Optimization of extraction process of aqueous extract of Rehmannia glutinosa based on entropy weight method in cooperation with analytic hierarchy process and back propagation neural network with multiple indicators[J]. Science and Technology of Food Industry,2022,43(19):264−272.

    ZHU Z Y, XIE Y X, YU Y T, et al. Optimization of extraction process of aqueous extract of Rehmannia glutinosa based on entropy weight method in cooperation with analytic hierarchy process and back propagation neural network with multiple indicators[J]. Science and Technology of Food Industry, 2022, 43(19): 264-272.
    [30]
    张爽, 付士朋, 刘悦, 等. HPLC法分析刺五加茎中原儿茶酸及苯丙素类成分动态累积规律研究[J]. 天然产物研究与开发,2018,30(8):1410−1414. [ZHANG S, FU S P, LIU Y, et al. Dynamic accumulation of protocatechuic acid and phenylpropanoids in Acanthopanax senticosus (Rupr. Maxim.) harms stems by RP-HPLC[J]. Natural Product Research and Development,2018,30(8):1410−1414.

    ZHANG S, FU S P, LIU Y, et al. Dynamic accumulation of protocatechuic acid and phenylpropanoids in Acanthopanax Senticosus (Rupr. Maxim. ) Harms stems by RP-HPLC[J]. Natural Product Research and Development, 2018, 30(8): 1410-1414.
    [31]
    孟祥才, 颜丙鹏, 孙晖, 等. 不同性别类型刺五加根茎和茎有效成分季节积累规律的研究[J]. 时珍国医国药,2012,23(3):601−603. [MENG X C, YAN B P, SUN H, et al. The Seasonal accumulating study on effective constituent contents in different sexual types of rhizome and stem of Acanthopanax senticosus[J]. Lishizhen Medicine and Materia Medica Research,2012,23(3):601−603.

    MENG X C, YAN B P, SUN H, et al. The Seasonal accumulating study on effective constituent contents in different sexual types of rhizome and stem of Acanthopanax senticosus[J]. Lishizhen Medicine and Materia Medica Research, 2012, 23(3): 601-603.
    [32]
    景炳年, 魏磊, 周雍, 等. 山银花总三萜超声辅助提取工艺优化及其抗菌抗氧化活性研究[J]. 食品工业科技,2021,42(1):174−181. [JING B N, WEI L, ZHOU Y, et al. Optimization of ultrasonic-assisted extraction process for total triterpenoids from Lonicera confuse and Its antibacterial and antioxidant activity[J]. Science and Technology of Food Industry,2021,42(1):174−181.

    JING B N, WEI L, ZHOU Y, et al. Optimization of ultrasonic-assisted extraction process for total triterpenoids from Lonicera confuse and Its antibacterial and antioxidant activity[J]. Science and Technology of Food Industry, 2021, 42(1): 174-181.
    [33]
    XU B G, FENG M, TILIWA E S, et al. Multi-frequency power ultrasound green extraction of polyphenols from Pingyin rose: Optimization using the response surface methodology and exploration of the underlying mechanism[J]. LWT, 2022, 156.
    [34]
    李星, 刘吟, 陈浩, 等. 超声波辅助提取莳萝挥发油的工艺优化及成分分析[J]. 粮食与油脂,2022,35(6):67−71,88. [LI X, LIU Y, CHEN H, et al. Optimization of ultrasonic assisted-extraction process and component analysis of dill volatile oil[J]. Cereals & Oils,2022,35(6):67−71,88. doi: 10.3969/j.issn.1008-9578.2022.06.015

    LI X, LIU Y, CHEN H, et al. Optimization of ultrasonic assisted-extraction process and component analysis of dill volatile oil[J]. Cereals & Oils, 2022, 35(6): 67-71+88. doi: 10.3969/j.issn.1008-9578.2022.06.015
    [35]
    JIANG H L, YANG J L, SHI Y P. Optimization of ultrasonic cell grinder extraction of anthocyanins from blueberry using response surface methodology[J]. Ultrasonics Sonochemistry,2017,34:325−331. doi: 10.1016/j.ultsonch.2016.06.003
    [36]
    刘嘉鑫, 陈小梅, 曾慧, 等. 响应面法优化蒲桃籽中三萜类化合物的提取工艺及其抗氧化活性分析[J]. 食品工业科技,2022,43(23):192−199. [LIU J X, CHEN X M, CENG H, et al. Optimization of the extraction process of triterpenoids from the seeds of Syzygium jambos L. alston by response surface methodology and its antioxidant activity[J]. Science and Technology of Food Industry,2022,43(23):192−199.

    LIU J X, CHEN X M, CENG H, et al. Optimization of the extraction process of triterpenoids from the seeds of Syzygium jambos L. Alston by Response Surface Methodology and Its Antioxidant Activity[J]. Science and Technology of Food Industry, 2022, 43(23): 192-199.
    [37]
    黄百祺, 黎朝旭, 林海歆, 等. 响应面法优化微波辅助提取枇杷叶熊果酸和齐墩果酸工艺[J]. 中国食品添加剂,2022,33(4):120−128. [HUANG B Q, LI C X, LIN H X, et al. Optimization of microwave-assisted extraction of ursolic acid and oleanolic acid from eriobotryae folium by response surface method[J]. China Food Additives,2022,33(4):120−128.

    HUANG B Q, LI C X, LIN H X, et al. Optimization of microwave-assisted extraction of ursolic acid and oleanolic acid from eriobotryae folium by response surface method[J]. China Food Additives, 2022, 33(4): 120-128.
  • Cited by

    Periodical cited type(7)

    1. 刘亚兵,罗学尹,戴宇樵,王敏,蒲璐璐,潘科,刘忠英,李琴. 灵芝菌处理对夏秋黑茶梗品质的影响. 沈阳农业大学学报. 2023(03): 289-295 .
    2. 孟圆,夏婷,程艳,耿贝贝,权冰艳,宋睿喆,于金浩,王敏,白晓丽. 碱法提取普洱茶渣膳食纤维的工艺优化. 食品研究与开发. 2023(18): 158-164 .
    3. 高丽娟,郜春霞,吴佳琪,吴修祯,李凯. 响应面法优化爬山虎不溶性膳食纤维反提取工艺. 河南农业. 2023(36): 56-59 .
    4. 许婧. 茶叶保健食品加工技术及发展趋势分析. 现代食品. 2022(04): 70-73 .
    5. 王彤辉,相堂永,徐姗,顾依,任舒静,江勇,杨帆,陈志鹏. 萌芽黑青稞喷干粉的制备工艺优化. 食品研究与开发. 2022(10): 156-165 .
    6. 皮小弟,罗瑞婷,李叶青,邹志群,吴思毅,黄志远. 豆渣水溶性膳食纤维的复合酶法提取及其应用于可食性膜研究. 保鲜与加工. 2022(10): 56-62 .
    7. 牛潇潇,王杰,王宁,梁亮,韩育梅,杨杨. 超微粉碎对马铃薯渣理化性质和微观结构的影响. 中国粮油学报. 2022(12): 84-91 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (93) PDF downloads (7) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return