DENG Xiaoyu, JIANG Hongrui, LIU Huanan, et al. Effects of Wet Ball Milling on Composition, Structure and Functional Properties of Coffee Peel Insoluble Dietary Fiber[J]. Science and Technology of Food Industry, 2023, 44(20): 77−84. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022120126.
Citation: DENG Xiaoyu, JIANG Hongrui, LIU Huanan, et al. Effects of Wet Ball Milling on Composition, Structure and Functional Properties of Coffee Peel Insoluble Dietary Fiber[J]. Science and Technology of Food Industry, 2023, 44(20): 77−84. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022120126.

Effects of Wet Ball Milling on Composition, Structure and Functional Properties of Coffee Peel Insoluble Dietary Fiber

More Information
  • Received Date: December 17, 2022
  • Available Online: August 20, 2023
  • To improve the high-value utilization of the coffee processing by-product, the coffee peel insoluble dietary fiber (CPIDF) was modified by wet ball milling, the effects of ball milling time on the composition, structure and functional properties of the CPIDF was investigated. The results showed that the soluble dietary fiber (SDF) content of CPIDF increased significantly (P<0.05), the particle size decreased and the absolute value of ζ-potential increased after treatment with wet ball milling. The microstructure of wet ball milling treated CPIDF particles showed more irregular surface pores and cracks, but without any changes of functional groups. With increasing the ball milling time, the suspension stability, water holding force, oil holding force, swelling force and emulsification capacity of CPIDF were improved. Compared with the untreated group (CPIDF-0), the water holding capacity of CPIDF treated with 12 h ball milling (CPIDF-12) increased from 7.00 g/g to 17.12 g/g, the oil holding capacity increased from 2.60 g/g to 9.64 g/g and swelling capacity increased from 3.91 mL/g to 6.90 mL/g. The emulsification index (EI) increased significantly from 38.85% (CPIDF-0) to 100% (CPIDF-12) (P<0.05). The emulsions prepared from CPIDF with more than 8 h ball milling treatment showed good stability at different temperatures, pH, ionic strength and storage time. Conclusively, the wet ball milling treatment improved the functional food properties of CPIDF which had the potential to be used as a food-grade solid emulsifier.
  • [1]
    张雪媛, 杨立昊, 赵昱, 等. 我国咖啡产业标准化水平浅析[J]. 热带农业科学,2020,40(12):133−137

    ZHANG X Y, YANG L H, ZHAO Y, et al. Brief analysis of the standardization level of coffee industry in China[J]. Chinese Journal of Tropical Agriculture,2020,40(12):133−137.
    [2]
    MURTHY P S, NAIDU M M. Sustainable management of coffee industry by-products and value addition-A review[J]. Resources Conservation & Recycling,2012,66:45−58.
    [3]
    GEMECHU F G. Embracing nutritional qualities, biological activities and technological properties of coffee byproducts in functional food formulation[J]. Trends in Food Science & Technology,2020,104(2):235−261.
    [4]
    MUDGIL D, BARAK S. Composition, properties and health benefits of indigestible carbohydrate polymers as dietary fiber:A review-Science Direct[J]. International Journal of Biological Macromolecules,2013,61(10):1−6.
    [5]
    丁莎莎, 黄立新, 张彩虹, 等. 膳食纤维的制备、性能测定及改性的研究进展[J]. 食品工业科技,2016,37(8):381−386 doi: 10.13386/j.issn1002-0306.2016.08.071

    DING S S, HUANG L X, ZHANG C H, et al. Research progress on preparation, properties determinations and modification of dietary fiber[J]. Science and Technology of Food Industry,2016,37(8):381−386. doi: 10.13386/j.issn1002-0306.2016.08.071
    [6]
    TAN X Y, ZHANG B J, CHEN L, et al. Effect of planetary ball-milling on multi-scale structures and pasting properties of waxy and high-amylose cornstarches[J]. Innovative Food Science and Emerging Technologies,2015,30:198−207. doi: 10.1016/j.ifset.2015.03.013
    [7]
    吴芸, 严国俊, 蔡宝昌. 纳米技术在中药领域的研究进展[J]. 中草药,2011,42(2):403−408

    WU Y, YAN G J, CAI B C. Advances in studies on nano-technology applied in Chinese materia medica[J]. Chinese Traditional and Herbal Drugs,2011,42(2):403−408.
    [8]
    SONG L W, QI J R, LIAO J S, et al. Enzymatic and enzyme-physical modification of citrus fiber by xylanase and planetary ball milling treatment[J]. Food Hydrocolloids,2021,121:107015. doi: 10.1016/j.foodhyd.2021.107015
    [9]
    ULLAH I, YIN T, XIONG S B, et al. Effects of thermal pre-treatment on physicochemical properties of nano-sized okara (soybean residue) insoluble dietary fiber prepared by wet media milling[J]. Journal of Food Engineering,2018,237:18−26. doi: 10.1016/j.jfoodeng.2018.05.017
    [10]
    YANG T, YAN H L, TANG C H. Wet media planetary ball milling remarkably improves functional and cholesterol-binding properties of okara[J]. Food Hydrocolloids,2021,111:106386. doi: 10.1016/j.foodhyd.2020.106386
    [11]
    DONG W J, WANG D D, HU R S, et al. Chemical composition, structural and functional properties of soluble dietary fiber obtained from coffee peel using different extraction methods[J]. Food Research International,2020,136:109497. doi: 10.1016/j.foodres.2020.109497
    [12]
    胡荣锁, 周晶, 董文江, 等. 响应面法优化咖啡果皮可溶性膳食纤维提取工艺和功能特性研究[J]. 热带农业科学,2015,35(9):66−72 doi: 10.3969/j.issn.1009-2196.2015.09.015

    HU R S , ZHOU J, DONG W J, et al. Coffee peel soluble dietary fiber extraction technology via response surface methodology optimization and functional characteristics analysis[J]. Chinese Journal of Tropical Agriculture. 2015,35(9):66−72. doi: 10.3969/j.issn.1009-2196.2015.09.015
    [13]
    罗白玲. 超微粉碎对咖啡果皮不溶性膳食纤维加工和功能特性的影响研究[D]. 银川:宁夏大学, 2020

    LUO B L. Effect of ultrafine grinding on processing and functional properties of insoluble dietary fiber from coffee peel[D]. Yinchuan:Ningxia University, 2020.
    [14]
    朱珂. 超声改性对咖啡果皮可溶性膳食纤维组成、结构及性质的影响[D]. 银川:宁夏大学, 2022

    ZHU K. Effect of ultrasound modification on the structure and properties of soluble dietary fiber in coffee peel[D]. Yinchuan:Ningxia University, 2022.
    [15]
    LIU C M, LIANG R H, DAI T T, et al. Effect of dynamic high pressure microfluidization modified insoluble dietary fiber on gelatinization and rheology of rice starch[J]. Food Hydrocolloids,2016,57:55−61. doi: 10.1016/j.foodhyd.2016.01.015
    [16]
    YAN L, LI T, LIU C H, et al. Effects of high hydrostatic pressure and superfine grinding treatment on physicochemical/ functional properties of pear pomace and chemical composition of its soluble dietary fibre[J]. Lebensmittel Wissenschaft Und Technologie,2019,107:171−177. doi: 10.1016/j.lwt.2019.03.019
    [17]
    SOWBHAGYA H B, SUMA P F, MAHADEVAMMA S, et al. Spent residue from cumin-a potential source of dietary fiber[J]. Food Chemistry,2007,104(3):1220−1225. doi: 10.1016/j.foodchem.2007.01.066
    [18]
    TIMGREN A, RAYNER M, SJÖÖ M, et al. Starch particles for food based Pickering emulsions[J]. Procedia Food Science,2011,1(1):95−103.
    [19]
    LU X X, ZHANG H W, LI Y Q, et al. Fabrication of milled cellulose particles-stabilized Pickering emulsions[J]. Food Hydrocolloids,2018,77:427−435. doi: 10.1016/j.foodhyd.2017.10.019
    [20]
    ZHU K X, HUANG S, PENG W, et al. Effect of ultrafine grinding on hydration and antioxidant properties of wheat bran dietary fiber[J]. Food Research International,2010,43(4):943−948. doi: 10.1016/j.foodres.2010.01.005
    [21]
    CHITRAKAR B, ZHANG M, ZHANG X, et al. Bioactive dietary Fiber powder from asparagus leaf by-product:Effect of low-temperature ball milling on physico-chemical, functional and microstructural characteristics[J]. Powder Technology,2020,366:275−282. doi: 10.1016/j.powtec.2020.02.068
    [22]
    ZHAO X, CHEN J, CHEN F, et al. Surface characterization of corn stalk superfine powder studied by FTIR and XRD[J]. Colloids and Surfaces B:Biointerfaces,2013,104:207−212. doi: 10.1016/j.colsurfb.2012.12.003
    [23]
    ULLAH I, YIN T, XIONG S B, et al. Structural characteristics and physicochemical properties of okara (soybean residue) insoluble dietary fiber modified by high-energy wet media milling[J]. LWT-Food Science and Technology,2017,82:15−22. doi: 10.1016/j.lwt.2017.04.014
    [24]
    HE S D, LI J, HE Q, et al. Physicochemical and antioxidant properties of hard white winter wheat (Triticum aestivm L.) bran superfine powder produced by eccentric vibratory milling[J]. Powder Technology, 2018, 325:126-133.
    [25]
    黄山, 汪楠, 张月, 等. 机械球磨处理对麻竹笋壳膳食纤维理化性质及结构的影响[J]. 食品与发酵工业,2020,46(5):115−120[HUANG S, ZHANG Y, et al. Effect of mechanical ball milling on physicochemical properties and structure of Dendrocalamus latiflorus shell dietary fiber[J]. Food and Fermentation Industries,2020,46(5):115−120. doi: 10.13995/j.cnki.11-1802/ts.021875

    HUANG S, ZHANG Y, et al. Effect of mechanical ball milling on physicochemical properties and structure of Dendrocalamus latiflorus shell dietary fiber[J]. Food and Fermentation Industries, 2020, 465): 115120. doi: 10.13995/j.cnki.11-1802/ts.021875
    [26]
    XIAO Z Q, YANG X Y, ZHAO W W, et al. Physicochemical properties of insoluble dietary fiber from pomelo ( Citrus grandis) peel modified by ball milling[J]. Journal of Food Processing and Preservation,2021,46(2):e16242.
    [27]
    YANG K, YANG Z H, WU W J, et al. Physicochemical properties improvement and structural changes of bamboo shoots ( Phyllostachys praecox f. prevernalis) dietary fiber modified by subcritical water and high pressure homogenization:A comparative study[J]. Journal of Food Science and Technology,2020,57(10):3659−3666. doi: 10.1007/s13197-020-04398-2
    [28]
    WANG H, HUANG T, TU Z C, et al. The adsorption of lead (II) ions by dynamic high pressure micro-fluidization treated insoluble soybean dietary fiber[J]. Journal of Food Science & Technology,2016,53(6):1−8.
    [29]
    游玉明, 王昱圭, 张洁, 等. 高压均质处理对竹笋膳食纤维理化性质及结构的影响[J]. 食品与发酵工业,2021,47(10):30−36 doi: 10.13995/j.cnki.11-1802/ts.025880

    YOU Y M, WANG Y Y, ZHANG J, et al. The effect of high-pressure homogenization on physicochemical and structural properties of bamboo shoots dietary fiber[J]. Food and Fermentation Industries,2021,47(10):30−36. doi: 10.13995/j.cnki.11-1802/ts.025880
    [30]
    TANPICHAI S, BISWAS S K, WITAYAKRAN S, et al. Water hyacinth:a sustainable lignin-poor cellulose source for the production of cellulose nanofibers[J]. ACS Sustainable Chemistry & Engineering,2019,7(23):18884−18893.
    [31]
    SONG Y, SU W, MU Y C. Modification of bamboo shoot dietary fiber by extrusion-cellulase technology and its properties[J]. International Journal of Food Properties,2018,21(1):1219−1232. doi: 10.1080/10942912.2018.1479715
    [32]
    SUDHA M L, BASKARAN V, LEELAVATHI K. Apple pomace as a source of dietary fiber and polyphenols and its effect on the rheological characteristics and cake making[J]. Food Chemistry,2007,104(2):686−692. doi: 10.1016/j.foodchem.2006.12.016
    [33]
    易甜, 崔文文, 王明锐, 等. 锦橙皮渣膳食纤维微粉化及其功能特性分析[J]. 食品科学,2019,40(10):8−14 doi: 10.7506/spkx1002-6630-20180615-330

    YI T, CUI W W, WANG M R, et al. Functional and structural properties of micronized dietary fiber powder extracted from peel and pomace of Jincheng sweet oranges ( Citrus sinensis (L.) osbeck cv. jincheng)[J]. Food Science,2019,40(10):8−14. doi: 10.7506/spkx1002-6630-20180615-330
    [34]
    HUANG J Y, LIAO J S, QI J R, et al. Structural and physicochemical properties of pectin-rich dietary fiber prepared from citrus peel[J]. Food Hydrocolloids,2021,110:106140. doi: 10.1016/j.foodhyd.2020.106140
    [35]
    PARK J, FLOCH M H. Prebiotics, probiotics, and dietary fiber in gastrointestinal disease[J]. Gastroenterology Clinics of North America,2007,36(1):47−63. doi: 10.1016/j.gtc.2007.03.001
    [36]
    CARLA N H, MATHEUS M P, ALVARO S, et al. Biosurfactants produced by Pseudomonas syringae pv tabaci:A versatile mixture with interesting emulsifying properties[J]. Process Biochemistry,2020,133(20):51−62.
    [37]
    HAZT B, BASSANI H P, ELIAS-MACHADO J P, et al. Effect of pH and protein particle shape on the stability of amylopectin–xyloglucan water-in-water emulsions[J]. Food Hydrocolloids,2020,104:105769. doi: 10.1016/j.foodhyd.2020.105769
    [38]
    HE K H, Zhang X Z, LI Y, et al. Water-insoluble dietary-fibers from Flammulina velutiper used as edible stabilizers for oil-in-water Pickering emulsions[J]. Food Hydrocolloids, 2020, 101.
    [39]
    敬雪莲, 蔡勇建, 陈碧芬, 等. 基于大豆酶解聚集体制备Pickering乳液凝胶及环境稳定性分析[J]. 食品科学,2022,43(20):7−17 doi: 10.7506/spkx1002-6630-20211123-288

    JING X L, CAI J Y, CHEN B F, et al. Analysis of environmental stability of Pickering emulsion gels prepared with insoluble soy peptide aggregates[J]. Food Science,2022,43(20):7−17. doi: 10.7506/spkx1002-6630-20211123-288
    [40]
    LI X L, LIU W J, XU B C, et al. Simple method for fabrication of high internal phase emulsions solely using novel pea protein isolate nanoparticles:Stability of ionic strength and temperature[J]. Food Chemistry,2021,370:1−9.
    [41]
    谭天仪, 李璟, 夏锐, 等. 超细化豆渣作为皮克林乳液稳定剂的特性研究[J]. 食品与发酵工业,2020,46(2):47−54 doi: 10.13995/j.cnki.11-1802/ts.022240

    TAN T Y, LI J, XIA R, et al. Preparation of ultrafine okara and its characteristics as a stabilizer for Pickering emulsion[J]. Food and Fermentation Industries,2020,46(2):47−54. doi: 10.13995/j.cnki.11-1802/ts.022240
    [42]
    LU Z Q, YE F Y, ZHOU G J, et al. Micronized apple pomace as a novel emulsifier for food O/W Pickering emulsion[J]. Food Chemistry,2020,330:127325. doi: 10.1016/j.foodchem.2020.127325

Catalog

    Article Metrics

    Article views (129) PDF downloads (20) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return