Citation: | DENG Xiaoyu, JIANG Hongrui, LIU Huanan, et al. Effects of Wet Ball Milling on Composition, Structure and Functional Properties of Coffee Peel Insoluble Dietary Fiber[J]. Science and Technology of Food Industry, 2023, 44(20): 77−84. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022120126. |
[1] |
张雪媛, 杨立昊, 赵昱, 等. 我国咖啡产业标准化水平浅析[J]. 热带农业科学,2020,40(12):133−137
ZHANG X Y, YANG L H, ZHAO Y, et al. Brief analysis of the standardization level of coffee industry in China[J]. Chinese Journal of Tropical Agriculture,2020,40(12):133−137.
|
[2] |
MURTHY P S, NAIDU M M. Sustainable management of coffee industry by-products and value addition-A review[J]. Resources Conservation & Recycling,2012,66:45−58.
|
[3] |
GEMECHU F G. Embracing nutritional qualities, biological activities and technological properties of coffee byproducts in functional food formulation[J]. Trends in Food Science & Technology,2020,104(2):235−261.
|
[4] |
MUDGIL D, BARAK S. Composition, properties and health benefits of indigestible carbohydrate polymers as dietary fiber:A review-Science Direct[J]. International Journal of Biological Macromolecules,2013,61(10):1−6.
|
[5] |
丁莎莎, 黄立新, 张彩虹, 等. 膳食纤维的制备、性能测定及改性的研究进展[J]. 食品工业科技,2016,37(8):381−386 doi: 10.13386/j.issn1002-0306.2016.08.071
DING S S, HUANG L X, ZHANG C H, et al. Research progress on preparation, properties determinations and modification of dietary fiber[J]. Science and Technology of Food Industry,2016,37(8):381−386. doi: 10.13386/j.issn1002-0306.2016.08.071
|
[6] |
TAN X Y, ZHANG B J, CHEN L, et al. Effect of planetary ball-milling on multi-scale structures and pasting properties of waxy and high-amylose cornstarches[J]. Innovative Food Science and Emerging Technologies,2015,30:198−207. doi: 10.1016/j.ifset.2015.03.013
|
[7] |
吴芸, 严国俊, 蔡宝昌. 纳米技术在中药领域的研究进展[J]. 中草药,2011,42(2):403−408
WU Y, YAN G J, CAI B C. Advances in studies on nano-technology applied in Chinese materia medica[J]. Chinese Traditional and Herbal Drugs,2011,42(2):403−408.
|
[8] |
SONG L W, QI J R, LIAO J S, et al. Enzymatic and enzyme-physical modification of citrus fiber by xylanase and planetary ball milling treatment[J]. Food Hydrocolloids,2021,121:107015. doi: 10.1016/j.foodhyd.2021.107015
|
[9] |
ULLAH I, YIN T, XIONG S B, et al. Effects of thermal pre-treatment on physicochemical properties of nano-sized okara (soybean residue) insoluble dietary fiber prepared by wet media milling[J]. Journal of Food Engineering,2018,237:18−26. doi: 10.1016/j.jfoodeng.2018.05.017
|
[10] |
YANG T, YAN H L, TANG C H. Wet media planetary ball milling remarkably improves functional and cholesterol-binding properties of okara[J]. Food Hydrocolloids,2021,111:106386. doi: 10.1016/j.foodhyd.2020.106386
|
[11] |
DONG W J, WANG D D, HU R S, et al. Chemical composition, structural and functional properties of soluble dietary fiber obtained from coffee peel using different extraction methods[J]. Food Research International,2020,136:109497. doi: 10.1016/j.foodres.2020.109497
|
[12] |
胡荣锁, 周晶, 董文江, 等. 响应面法优化咖啡果皮可溶性膳食纤维提取工艺和功能特性研究[J]. 热带农业科学,2015,35(9):66−72 doi: 10.3969/j.issn.1009-2196.2015.09.015
HU R S , ZHOU J, DONG W J, et al. Coffee peel soluble dietary fiber extraction technology via response surface methodology optimization and functional characteristics analysis[J]. Chinese Journal of Tropical Agriculture. 2015,35(9):66−72. doi: 10.3969/j.issn.1009-2196.2015.09.015
|
[13] |
罗白玲. 超微粉碎对咖啡果皮不溶性膳食纤维加工和功能特性的影响研究[D]. 银川:宁夏大学, 2020
LUO B L. Effect of ultrafine grinding on processing and functional properties of insoluble dietary fiber from coffee peel[D]. Yinchuan:Ningxia University, 2020.
|
[14] |
朱珂. 超声改性对咖啡果皮可溶性膳食纤维组成、结构及性质的影响[D]. 银川:宁夏大学, 2022
ZHU K. Effect of ultrasound modification on the structure and properties of soluble dietary fiber in coffee peel[D]. Yinchuan:Ningxia University, 2022.
|
[15] |
LIU C M, LIANG R H, DAI T T, et al. Effect of dynamic high pressure microfluidization modified insoluble dietary fiber on gelatinization and rheology of rice starch[J]. Food Hydrocolloids,2016,57:55−61. doi: 10.1016/j.foodhyd.2016.01.015
|
[16] |
YAN L, LI T, LIU C H, et al. Effects of high hydrostatic pressure and superfine grinding treatment on physicochemical/ functional properties of pear pomace and chemical composition of its soluble dietary fibre[J]. Lebensmittel Wissenschaft Und Technologie,2019,107:171−177. doi: 10.1016/j.lwt.2019.03.019
|
[17] |
SOWBHAGYA H B, SUMA P F, MAHADEVAMMA S, et al. Spent residue from cumin-a potential source of dietary fiber[J]. Food Chemistry,2007,104(3):1220−1225. doi: 10.1016/j.foodchem.2007.01.066
|
[18] |
TIMGREN A, RAYNER M, SJÖÖ M, et al. Starch particles for food based Pickering emulsions[J]. Procedia Food Science,2011,1(1):95−103.
|
[19] |
LU X X, ZHANG H W, LI Y Q, et al. Fabrication of milled cellulose particles-stabilized Pickering emulsions[J]. Food Hydrocolloids,2018,77:427−435. doi: 10.1016/j.foodhyd.2017.10.019
|
[20] |
ZHU K X, HUANG S, PENG W, et al. Effect of ultrafine grinding on hydration and antioxidant properties of wheat bran dietary fiber[J]. Food Research International,2010,43(4):943−948. doi: 10.1016/j.foodres.2010.01.005
|
[21] |
CHITRAKAR B, ZHANG M, ZHANG X, et al. Bioactive dietary Fiber powder from asparagus leaf by-product:Effect of low-temperature ball milling on physico-chemical, functional and microstructural characteristics[J]. Powder Technology,2020,366:275−282. doi: 10.1016/j.powtec.2020.02.068
|
[22] |
ZHAO X, CHEN J, CHEN F, et al. Surface characterization of corn stalk superfine powder studied by FTIR and XRD[J]. Colloids and Surfaces B:Biointerfaces,2013,104:207−212. doi: 10.1016/j.colsurfb.2012.12.003
|
[23] |
ULLAH I, YIN T, XIONG S B, et al. Structural characteristics and physicochemical properties of okara (soybean residue) insoluble dietary fiber modified by high-energy wet media milling[J]. LWT-Food Science and Technology,2017,82:15−22. doi: 10.1016/j.lwt.2017.04.014
|
[24] |
HE S D, LI J, HE Q, et al. Physicochemical and antioxidant properties of hard white winter wheat (Triticum aestivm L.) bran superfine powder produced by eccentric vibratory milling[J]. Powder Technology, 2018, 325:126-133.
|
[25] |
黄山, 汪楠, 张月, 等. 机械球磨处理对麻竹笋壳膳食纤维理化性质及结构的影响[J]. 食品与发酵工业,2020,46(5):115−120[HUANG S, ZHANG Y, et al. Effect of mechanical ball milling on physicochemical properties and structure of Dendrocalamus latiflorus shell dietary fiber[J]. Food and Fermentation Industries,2020,46(5):115−120. doi: 10.13995/j.cnki.11-1802/ts.021875
|
[26] |
XIAO Z Q, YANG X Y, ZHAO W W, et al. Physicochemical properties of insoluble dietary fiber from pomelo ( Citrus grandis) peel modified by ball milling[J]. Journal of Food Processing and Preservation,2021,46(2):e16242.
|
[27] |
YANG K, YANG Z H, WU W J, et al. Physicochemical properties improvement and structural changes of bamboo shoots ( Phyllostachys praecox f. prevernalis) dietary fiber modified by subcritical water and high pressure homogenization:A comparative study[J]. Journal of Food Science and Technology,2020,57(10):3659−3666. doi: 10.1007/s13197-020-04398-2
|
[28] |
WANG H, HUANG T, TU Z C, et al. The adsorption of lead (II) ions by dynamic high pressure micro-fluidization treated insoluble soybean dietary fiber[J]. Journal of Food Science & Technology,2016,53(6):1−8.
|
[29] |
游玉明, 王昱圭, 张洁, 等. 高压均质处理对竹笋膳食纤维理化性质及结构的影响[J]. 食品与发酵工业,2021,47(10):30−36 doi: 10.13995/j.cnki.11-1802/ts.025880
YOU Y M, WANG Y Y, ZHANG J, et al. The effect of high-pressure homogenization on physicochemical and structural properties of bamboo shoots dietary fiber[J]. Food and Fermentation Industries,2021,47(10):30−36. doi: 10.13995/j.cnki.11-1802/ts.025880
|
[30] |
TANPICHAI S, BISWAS S K, WITAYAKRAN S, et al. Water hyacinth:a sustainable lignin-poor cellulose source for the production of cellulose nanofibers[J]. ACS Sustainable Chemistry & Engineering,2019,7(23):18884−18893.
|
[31] |
SONG Y, SU W, MU Y C. Modification of bamboo shoot dietary fiber by extrusion-cellulase technology and its properties[J]. International Journal of Food Properties,2018,21(1):1219−1232. doi: 10.1080/10942912.2018.1479715
|
[32] |
SUDHA M L, BASKARAN V, LEELAVATHI K. Apple pomace as a source of dietary fiber and polyphenols and its effect on the rheological characteristics and cake making[J]. Food Chemistry,2007,104(2):686−692. doi: 10.1016/j.foodchem.2006.12.016
|
[33] |
易甜, 崔文文, 王明锐, 等. 锦橙皮渣膳食纤维微粉化及其功能特性分析[J]. 食品科学,2019,40(10):8−14 doi: 10.7506/spkx1002-6630-20180615-330
YI T, CUI W W, WANG M R, et al. Functional and structural properties of micronized dietary fiber powder extracted from peel and pomace of Jincheng sweet oranges ( Citrus sinensis (L.) osbeck cv. jincheng)[J]. Food Science,2019,40(10):8−14. doi: 10.7506/spkx1002-6630-20180615-330
|
[34] |
HUANG J Y, LIAO J S, QI J R, et al. Structural and physicochemical properties of pectin-rich dietary fiber prepared from citrus peel[J]. Food Hydrocolloids,2021,110:106140. doi: 10.1016/j.foodhyd.2020.106140
|
[35] |
PARK J, FLOCH M H. Prebiotics, probiotics, and dietary fiber in gastrointestinal disease[J]. Gastroenterology Clinics of North America,2007,36(1):47−63. doi: 10.1016/j.gtc.2007.03.001
|
[36] |
CARLA N H, MATHEUS M P, ALVARO S, et al. Biosurfactants produced by Pseudomonas syringae pv tabaci:A versatile mixture with interesting emulsifying properties[J]. Process Biochemistry,2020,133(20):51−62.
|
[37] |
HAZT B, BASSANI H P, ELIAS-MACHADO J P, et al. Effect of pH and protein particle shape on the stability of amylopectin–xyloglucan water-in-water emulsions[J]. Food Hydrocolloids,2020,104:105769. doi: 10.1016/j.foodhyd.2020.105769
|
[38] |
HE K H, Zhang X Z, LI Y, et al. Water-insoluble dietary-fibers from Flammulina velutiper used as edible stabilizers for oil-in-water Pickering emulsions[J]. Food Hydrocolloids, 2020, 101.
|
[39] |
敬雪莲, 蔡勇建, 陈碧芬, 等. 基于大豆酶解聚集体制备Pickering乳液凝胶及环境稳定性分析[J]. 食品科学,2022,43(20):7−17 doi: 10.7506/spkx1002-6630-20211123-288
JING X L, CAI J Y, CHEN B F, et al. Analysis of environmental stability of Pickering emulsion gels prepared with insoluble soy peptide aggregates[J]. Food Science,2022,43(20):7−17. doi: 10.7506/spkx1002-6630-20211123-288
|
[40] |
LI X L, LIU W J, XU B C, et al. Simple method for fabrication of high internal phase emulsions solely using novel pea protein isolate nanoparticles:Stability of ionic strength and temperature[J]. Food Chemistry,2021,370:1−9.
|
[41] |
谭天仪, 李璟, 夏锐, 等. 超细化豆渣作为皮克林乳液稳定剂的特性研究[J]. 食品与发酵工业,2020,46(2):47−54 doi: 10.13995/j.cnki.11-1802/ts.022240
TAN T Y, LI J, XIA R, et al. Preparation of ultrafine okara and its characteristics as a stabilizer for Pickering emulsion[J]. Food and Fermentation Industries,2020,46(2):47−54. doi: 10.13995/j.cnki.11-1802/ts.022240
|
[42] |
LU Z Q, YE F Y, ZHOU G J, et al. Micronized apple pomace as a novel emulsifier for food O/W Pickering emulsion[J]. Food Chemistry,2020,330:127325. doi: 10.1016/j.foodchem.2020.127325
|