LI Shiyong, WEI Qiuli, QIN Qionghui, et al. Optimization of Succinic Acid Production from Sweet Potato Powder by Actinobacillus succinogenes[J]. Science and Technology of Food Industry, 2023, 44(20): 108−115. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022120045.
Citation: LI Shiyong, WEI Qiuli, QIN Qionghui, et al. Optimization of Succinic Acid Production from Sweet Potato Powder by Actinobacillus succinogenes[J]. Science and Technology of Food Industry, 2023, 44(20): 108−115. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022120045.

Optimization of Succinic Acid Production from Sweet Potato Powder by Actinobacillus succinogenes

More Information
  • Received Date: December 14, 2022
  • Available Online: July 30, 2023
  • In order to raise yields and reduce production costs, the fermentation medium of succinic acid production by Actinobacillus succinogenes from sweet potato powder. First, the effects of sweet potato powder concentration, MgCO3 concentration, liquefaction enzyme dose, saccharifying enzyme dose, nitrogen source concentration and fermentation time on succinic acid production were investigated by single factor experiments in this study. Then, the optimum values of the parameters were obtained by orthogonal experiment design. Finally, the optimal fermentation conditions were amplified by 2 L stirred bioreactor. The results showed that mixed nitrogen source (yeast powder:corn steep liquor=1:2) was used as a proper nutrient in the succinic acid production from sweet potato powder. The formula optimization results showed that the important parameters were sweet potato powder, MgCO3, liquifying enzyme dose, glucoamylase dose and mixed nitrogen source. The optimum condition was as follows: Sweet potato powder 115 g/L, MgCO3 60 g/L, liquifying enzyme dose 0.008 KUN-S/g substrate, glucoamylase dose 3.09 AGU/g substrate, mixed nitrogen source 33 g/L. Succinic acid yield reached 69.89 g/L at the optimal condition, which was increased by 64.60% compared to that before optimization (42.46 g/L). Approximately 71.42 g/L of succinic acid content with a yield of 79.87% and a productivity of 0.99 g/(L·h) was obtained after 72 h in a 2 L bioreactor. Therefore, sweet potato powder could be a promising feedstock for the economical and efficient production of succinic acid through fermentation by A. succinogenes.
  • [1]
    SILLAPARASSAMEE O, CHINWETKITVANICH S, KANCHANASUTA S, et al. Metabolic flux analysis on succinic acid production from crude glycerol by Actinobacillus succinogenes[J]. Biomass Conversion and Biorefinery, 2021: 10191–10202.
    [2]
    LI C, ONG K L, CUI Z Y, et al. Promising advancement in fermentative succinic acid production by yeast hosts[J]. Journal of Hazardous Materials,2021,401(5):1−16.
    [3]
    张耀, 邱晓曼, 陈程鹏, 等. 生物法制造丁二酸研究进展[J]. 化工学报,2020,71(5):1964−1975. [ZHANG Y, QIU X M, CHEN C P, et al. Recent progress in microbial production of succinic acid[J]. CIESC Journal,2020,71(5):1964−1975.

    ZHANG Y, QIU X M, CHEN C P, et al. Recent progress in microbial production of succinic acid[J]. CIESC Journal, 2020, 71(5): 1964−1975.
    [4]
    CHIANG Y Y, NAGARAJAN D, LO Y C, et al. Succinic acid fermentation with immobilized Actinobacillus succinogenes using hydrolysate of carbohydrate-rich microalgal biomass[J]. Bioresource Technology,2021,342:126014.
    [5]
    KUMAR R, BASAK B, JEON B H. Sustainable production and purification of succinic acid: A review of membrane-integrated green approach[J]. Journal of Cleaner Production,2020,277(20):123954.
    [6]
    BILLERACH G, PREZIOSI-BELLOY L, LIN C S K, et al. Impact of nitrogen deficiency on succinic acid production by engineered strains of Yarrowia lipolytica[J]. Journal of Biotechnology,2021,10(336):30−40. doi: 10.1016/j.jbiotec.2021.06.001
    [7]
    OMWENE P I, YAĞCIOĞLU M, ÖCAL-SARIHAN Z B, et al. Batch fermentation of succinic acid from cheese whey by Actinobacillus succinogenes under variant medium composition[J]. 3 Biotech,2021,11(8):389−399.
    [8]
    ZHANG W M, YANG Q, WU M, et al. Metabolic regulation of organic acid biosynthesis in Actinobacillus succinogenes[J]. Frontiers in Bioengineering and Biotechnology,2019,7:216−226. doi: 10.3389/fbioe.2019.00001
    [9]
    SHEN N K, LI S Y, LI S Y, et al. Reduced acetic acid formation using NaHSO3 as a steering agent by Actinobacillus succinogenes GXAS137[J]. Journal of Bioscience and Bioengineering,2023,135(3):203−209. doi: 10.1016/j.jbiosc.2022.12.007
    [10]
    FERONE M, RAGANATI F, OLIVIERI G, et al. Continuous succinic acid fermentation by Actinobacillus Succinogenes: Assessment of growth and succinic acid production kinetics[J]. Applied Biochemistry and Biotechnology,2019,187(3):782−799. doi: 10.1007/s12010-018-2846-8
    [11]
    JIANG M, XU R, XI Y L, et al. Succinic acid production from cellobiose by Actinobacillus succinogenes[J]. Bioresource Technology,2013,135:469−474. doi: 10.1016/j.biortech.2012.10.019
    [12]
    LI Q, YANG M H, WANG D, et al. Efficient conversion of crop stalk wastes into succinic acid production by Actinobacillus succinogenes[J]. Bioresource Technology,2010,101(9):3292−3294. doi: 10.1016/j.biortech.2009.12.064
    [13]
    CHEN K Q, JIANG M, WEI P, et al. Succinic acid production from acid hydrolysate of corn fiber by Actinobacillus succinogenes[J]. Applied Biochemistry and Biotechnology,2010,160(2):477−485. doi: 10.1007/s12010-008-8367-0
    [14]
    吴冬梅, 赵海, 靳艳玲. 甘薯发酵技术研究进展[J]. 粮食与饲料工业,2022,403(3):24−29. [WU D M, ZHAO H, JIN Y L. Research progress of sweet potato fermentation technology[J]. Cereal and Feed Industry,2022,403(3):24−29. doi: 10.7633/j.issn.1003-6202.2022.03.007

    WU D M, ZHAO H, JIN Y L. Research progress of sweet potato fermentation technology[J]. Cereal and Feed Industry, 2022, 403(3): 24−29. doi: 10.7633/j.issn.1003-6202.2022.03.007
    [15]
    CHENG Q Y, TAO J, LI Y, et al. Production of nisin and lactic acid from the starch of sweet potato by simultaneous saccharification and fermentation with two stage pH adjustment[J]. 3 Biotech,2021,11(7):320−326.
    [16]
    RIZZOLO J A, WOICIECHOWSKI A L, JÚNIOR A I M, et al. The potential of sweet potato biorefinery and development of alternative uses[J]. SN Applied Sciences,2021,3(3):347.
    [17]
    ZUO S S, NIU D Z, NING T T, et al. Protein enrichment of sweet potato beverage residues mixed with peanut shells by Aspergillus oryzae and Bacillus subtilis using central composite design[J]. Waste and Biomass Valorization,2018,9(5):835−844. doi: 10.1007/s12649-017-9844-x
    [18]
    ZHANG H Y, SHEN N K, QIN Y, et al. Complete genome sequence of Actinobacillus succinogenes GXAS137, a highly efficient producer of succinic acid[J]. Genome Announcements,2018,6(8):e01562.
    [19]
    张小村, 孔凡美, 姜小燕, 等. 不同品种甘薯与小麦配粉对粉质及馒头品质的影响[J]. 中国粮油学报,2020,35(5):23−29. [ZHANG X C, KONG F M, JIANG X Y, et al. Effects of different sweet potato flour on wheat flour quality and steamed bread quality[J]. Journal of the Chinese Cereals and Oils,2020,35(5):23−29.

    ZHANG X C, KONG F M, JIANG X Y, et al. Effects of different sweet potato flour on wheat flour quality and steamed bread quality[J]. Journal of the Chinese Cereals and Oils, 2020, 35(5): 23−29.
    [20]
    申乃坤, 王青艳, 秦艳, 等. 木薯粉同步糖化发酵(SSF)产丁二酸[J]. 微生物学通报,2014,41(8):1507−1515. [SHEN N K, WANG Q Y, QIN Y, et al. Succinic acid fermentation by simultaneous saccharification and fermentation (SSF) with cassava flour[J]. Microbiology China,2014,41(8):1507−1515. doi: 10.13344/j.microbiol.china.130712

    SHEN N K, WANG Q Y, QIN Y, et al. Succinic acid fermentation by simultaneous saccharification and fermentation (SSF) with cassava flour[J]. Microbiology China, 2014, 41(8): 1507−1515. doi: 10.13344/j.microbiol.china.130712
    [21]
    马永强, 邓倩, 范洪臣, 等. 高效液相色谱法测定发酵液中有机酸的优化研究[J]. 中国调味品,2019,44(10):18−25. [MA Y Q, DENG Q, FANG H C, et al. Study on optimization of determination of organic acids in fermentation broth by high performance liquid chromatography[J]. China Condiment,2019,44(10):18−25. doi: 10.3969/j.issn.1000-9973.2019.10.005

    MA Y Q, DENG Q, FANG H C, et al. Study on optimization of determination of organic acids in fermentation broth by high performance liquid chromatography[J]. China Condiment, 2019, 44(10): 18−25. doi: 10.3969/j.issn.1000-9973.2019.10.005
    [22]
    MILLER G L. Use of dinitrosalicylic acid reagent for determination of reducing sugar[J]. Analytical Chemistry,1959,31(3):426−428. doi: 10.1021/ac60147a030
    [23]
    SHEN N K, ZHANG H Y, QIN Y, et al. Efficient production of succinic acid from duckweed (Landoltia punctata) hydrolysate by Actinobacillus succinogenes GXAS137[J]. Bioresource Technology,2018,250:35−42. doi: 10.1016/j.biortech.2017.09.208
    [24]
    李亿, 张红岩, 朱婧, 等. 响应面优化木糖母液发酵产丁二酸[J]. 化工进展,2018,37(1):252−259. [LI Y, ZHANG H Y, ZHU J, et al. Optimization of succinic acid fermentation from xylose mother liquor by response surface methodology[J]. Chemical Industry and Engineering Progress,2018,37(1):252−259. doi: 10.16085/j.issn.1000-6613.2017-0631

    LI Y, ZHANG H Y, ZHU J, et al. Optimization of succinic acid fermentation from xylose mother liquor by response surface methodology[J]. Chemical Industry and Engineering Progress, 2018, 37(1): 252−259. doi: 10.16085/j.issn.1000-6613.2017-0631
    [25]
    TAN J P, LUTHFI A A I, MANAF S F A, et al. Incorporation of CO2 during the production of succinic acid from sustainable oil palm frond juice[J]. Journal of CO2 Utilization,2018,26:595−601. doi: 10.1016/j.jcou.2018.06.006
    [26]
    PATERAKI C, SKLIROS D, FLEMETAKIS E, et al. Succinic acid production from pulp and paper industry waste: A transcriptomic approach[J]. Journal of Biotechnology,2021,325:250−260. doi: 10.1016/j.jbiotec.2020.10.015
    [27]
    ZOU W, ZHU L W, LI H M, et al. Significance of CO2 donor on the production of succinic acid by Actinobacillus succinogenes ATCC 55618[J]. Microbial Cell Factories,2011,10(1):87. doi: 10.1186/1475-2859-10-1
    [28]
    王菁艺, 庞林江, 路兴花, 等. 液化工艺对甘薯渣制备低聚异麦芽糖含量的影响[J]. 食品科技,2016,41(2):104−108. [WANG J Y, PANG L J, XU X H, et al. Effects of liquefaction DE value on preparation of isomaltooligosaccharide from sweet potato residue[J]. Food Science and Technology,2016,41(2):104−108. doi: 10.13684/j.cnki.spkj.2016.02.020

    WANG J Y, PANG L J, XU X H, et al. Effects of liquefaction DE value on preparation of isomaltooligosaccharide from sweet potato residue[J]. Food Science and Technology, 2016, 41(2): 104−108. doi: 10.13684/j.cnki.spkj.2016.02.020
    [29]
    JUJJAVARAPU S E, DHAGAT S. Evolutionary trends in industrial production of α-amylase[J]. Recent Patents on Biotechnology,2019,13(1):4−18. doi: 10.2174/2211550107666180816093436
    [30]
    CHATTERJEE S, MOHAN S V. Refining of vegetable waste to renewable sugars for ethanol production: Depolymerization and fermentation optimization[J]. Bioresource Technology,2021,340:125650.
    [31]
    杨梦霞, 严晶晶, 杨东升. 特色大米啤酒糖化工艺优化及其理化指标分析[J]. 食品科技,2022,47(7):47−53,62. [YANG M X, YAN J J, YANG D S. Optimization of the special rice beer saccharification process and physicochemical index analysis[J]. Food Science and Technology,2022,47(7):47−53,62. doi: 10.13684/j.cnki.spkj.2022.08.028

    YANG M X, YAN J J, YANG D S. Optimization of the special rice beer saccharification process and physicochemical index analysis[J]. Food Science and Technology, 2022, 47(7): 47−53+62. doi: 10.13684/j.cnki.spkj.2022.08.028
    [32]
    XU Q Y, BAI F, CHEN N, et al. Utilization of acid hydrolysate of recovered bacterial cell as a novel organic nitrogen source for L-tryptophan fermentation[J]. Bioengineered Bugs,2019,10(1):23−32. doi: 10.1080/21655979.2019.1586053
    [33]
    XI Y L, CHEN K Q, DAI W Y, et al. Succinic acid production by Actinobacillus succinogenes NJ113 using corn steep liquor powder as nitrogen source[J]. Bioresource Technology,2013,136:775−779. doi: 10.1016/j.biortech.2013.03.107
    [34]
    CARVALHO M, ROCA C, REIS M A M. Improving succinic acid production by Actinobacillus succinogenes from raw industrial carob pods[J]. Bioresource Technology,2016,218:491−497. doi: 10.1016/j.biortech.2016.06.140
    [35]
    MARINHO G S, ALVARADO-MORALES M, ANGELIDAKI I. Valorization of macroalga Saccharina latissima as novel feedstock for fermentation-based succinic acid production in a biorefinery approach and economic aspects[J]. Algal Research,2016,16:102−109. doi: 10.1016/j.algal.2016.02.023
    [36]
    LIU Y P, ZHENG P, SUN Z H, et al. Economical succinic acid production from cane molasses by Actinobacillus succinogenes[J]. Bioresource Technology,2008,99(6):1736−1742. doi: 10.1016/j.biortech.2007.03.044
    [37]
    YANG Q, WU M, DAI Z X, et al. Comprehensive investigation of succinic acid production by Actinobacillus succinogenes: A promising native succinic acid producer[J]. Biofuels, Bioproducts and Biofuels,2020,14(5):950−964. doi: 10.1002/bbb.2058
    [38]
    王欣, 李强, 曹清河, 等. 中国甘薯产业和种业发展现状与未来展望[J]. 中国农业科学,2021,54(3):483−492. [WANG X, LI Q, CAO Q H, et al. Current status and future prospective of sweetpotato production and seed industry in China[J]. Scientia Agricultura Sinica,2021,54(3):483−492. doi: 10.3864/j.issn.0578-1752.2021.03.003

    WANG X, LI Q, CAO Q H, et al. Current status and future prospective of sweetpotato production and seed industry in China[J]. Scientia Agricultura Sinica, 2021, 54(3): 483−492. doi: 10.3864/j.issn.0578-1752.2021.03.003
  • Related Articles

    [1]XU Yi, BAI Yuwu, ZHAO Yuying, YANG Chao, DENG Shanggui, GAO Yuanpei. Quality Changes of Large Yellow Croaker Meat with Different Cooked Degrees during Frozen Storage and Reheating Process[J]. Science and Technology of Food Industry, 2025, 46(6): 138-146. DOI: 10.13386/j.issn1002-0306.2024040459
    [2]WU Sifen, TU Zongcai, GUO Debin, HU Xinyan, LI Jinlin, LUO Yiyong, HU Mingming. Changes in Quality of Sauced Duck Necks during Cold Storage and Its Correlation with Microbial Community[J]. Science and Technology of Food Industry, 2024, 45(16): 319-327. DOI: 10.13386/j.issn1002-0306.2023100227
    [3]GE Zhiqin, CHEN Zhe, YU Dawei, XIA Wenshui, XU Yanshun. Quality Changes of Pre-fried Fish during Frozen and Reheating Process[J]. Science and Technology of Food Industry, 2024, 45(4): 267-272. DOI: 10.13386/j.issn1002-0306.2023040031
    [4]WANG Zhengyun, LI Ting, LIU Zixiao, YUAN Zhi, JIANG Huiliang, ZHAN Yueping. Quality Changes of Grass Carp Visceral Fish Oil under Different Storage Temperatures[J]. Science and Technology of Food Industry, 2023, 44(1): 362-368. DOI: 10.13386/j.issn1002-0306.2022040031
    [5]ZHANG Jingjing, WANG Yan, LIU Xiaoxiao, WU Fuxiang, PAN Jianzhong, HU Fangdi. Quality Change of Flaxseed Oil during Frying Process[J]. Science and Technology of Food Industry, 2022, 43(16): 50-58. DOI: 10.13386/j.issn1002-0306.2021110150
    [6]HUANG Yechuan, WANG Yang, GOU Xingneng, PENG Chunlei, ZHANG Xicai. The Quality Changes of Two Fermented Sausages under Different Storage Temperatures and the Establishment of Prediction Models for Their Shelf Life[J]. Science and Technology of Food Industry, 2022, 43(7): 343-351. DOI: 10.13386/j.issn1002-0306.2021070158
    [7]ZHANG Li, MA Ji-bing, WANG Yan, DONG Chao, CUI Wen-bing, YU Qun-li, HAN Ling. Quality change during processing of dried yak meat in pastoral areas of Gansu[J]. Science and Technology of Food Industry, 2017, (21): 1-6. DOI: 10.13386/j.issn1002-0306.2017.21.001
    [8]WEI Yi-nong, JIA Min, ZHANG Tao, XUE Yong, XUE Chang-hu, LI Zhao-jie, WANG Yu-ming. Quality changes and optimization of different abalones during heat processing[J]. Science and Technology of Food Industry, 2017, (15): 181-184. DOI: 10.13386/j.issn1002-0306.2017.15.034
    [9]DONG Yi-wei, GUO Quan-you, LI Bao-guo, JIANG Chao-jun, GU Tian-sheng. Identification of dominated spoilage organisms and quality changes in lightly salted Mylopharyngodon piceus during processing and storage[J]. Science and Technology of Food Industry, 2015, (23): 306-310. DOI: 10.13386/j.issn1002-0306.2015.23.055
    [10]XU Hui-wen, XIE Jing, TANG Yuan-rui, CHEN Yu-zhou, ZHANG Ning, LI Nian-wen, PAN Wen-long. Study on the permeability of salt and quality change of tuna by the brine solution immersion freezing[J]. Science and Technology of Food Industry, 2014, (12): 349-353. DOI: 10.13386/j.issn1002-0306.2014.12.068
  • Cited by

    Periodical cited type(2)

    1. 邱立,谷贵章,王欣宇,高兴杰,杨文鸽,徐大伦. 浒苔多酚对肥胖小鼠血脂代谢及肠道菌群的调节作用. 核农学报. 2022(08): 1638-1647 .
    2. 王双燕. 壳聚糖及其衍生物在医药领域的研究进展. 云南化工. 2021(04): 7-8+16 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (108) PDF downloads (16) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return