Citation: | XUE Changlu, ZHANG Pengfei, BAI Lijun, et al. Heterologous Expression of Leghemoglobin in Saccharomyces cerevisiae[J]. Science and Technology of Food Industry, 2023, 44(20): 101−107. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022120029. |
[1] |
JIN Y, HE X Y, ANDOH-KUMI K, et al. Evaluating potential risks of food allergy and toxicity of soy leghemoglobin expressed in Pichia pastoris[J]. Molecular Nutrition & Food Research,2018,62(1):13.
|
[2] |
APPLEBY C A. Leghemoglobin and rhizobium respiration[J]. Annual Review of Plant Physiology,1984,35(1):443−478. doi: 10.1146/annurev.pp.35.060184.002303
|
[3] |
HARGROVE M S, BARRY J K, BRUCKER E A, et al. Characterization of recombinant soybean leghemoglobin a and apolar distal histidine mutants[J]. Journal of Molecular Biology,1997,266(5):1032−1042. doi: 10.1006/jmbi.1996.0833
|
[4] |
SIMSA R, YUEN J, STOUT A, et al. Extracellular heme proteins influence bovine myosatellite cell proliferation and the color of cell-based meat[J]. Foods,2019,8(10):521. doi: 10.3390/foods8100521
|
[5] |
FRASER R Z, SHITUT M, AGRAWAL P, et al. Safety evaluation of soy leghemoglobin protein preparation derived from Pichia pastoris, intended for use as a flavor catalyst in plant-based meat[J]. International Journal of Toxicology,2018,37(3):241−262. doi: 10.1177/1091581818766318
|
[6] |
周景文, 张国强, 赵鑫锐, 等. 未来食品的发展:植物蛋白肉与细胞培养肉[J]. 食品与生物技术学报,2020,39(10):1−8. [ZHOU Z W, ZHANG G Q, ZHAO X R, et al. Future of food: plant-based and cell-cultured meat[J]. Journal of Food Science and Technology,2020,39(10):1−8. doi: 10.3969/j.issn.1673-1689.2020.10.001
ZHOU Z W, ZHANG G Q, ZHAO X Y, et al. Future of food: plant-based and cell-cultured meat[J]. Journal of Food Science and Technology, 2020, 39(10): 1-8. doi: 10.3969/j.issn.1673-1689.2020.10.001
|
[7] |
陈林杰, 薛常鲁, 苏悦, 等. 豆血红蛋白在毕赤酵母中的表达条件优化[J]. 微生物学通报,2022,49(6):2050−2061. [CHEN L J, XUE C L, SU Y, et al. Optimization of leghemoglobin expression conditions in Pichia pastoris[J]. Microbiology China,2022,49(6):2050−2061. doi: 10.13344/j.microbiol.china.210944
CHEN L J, XUE C L, SU Y, et al. Optimization of leghemoglobin expression conditions in Pichia pastoris[J]. Microbiology China, 2022, 49(6): 2050-2061. doi: 10.13344/j.microbiol.china.210944
|
[8] |
SHAO Y R, XUE C L, LIU W J, et al. High-level secretory production of leghemoglobin in Pichia pastoris through enhanced globin expression and heme biosynthesis[J]. Bioresource Technology,2022,363:127884. doi: 10.1016/j.biortech.2022.127884
|
[9] |
ARREDONDO-PETER R, MORAN J F, SARATH G, et al. Molecular cloning of the cowpea leghemoglobin II gene and expression of its cDNA in Escherichia coli (purification and characterization of the recombinant protein)[J]. Plant Physiology,1997,114(2):493−500. doi: 10.1104/pp.114.2.493
|
[10] |
LIU L F, MARTINEZ J L, LIU Z H, et al. Balanced globin protein expression and heme biosynthesis improve production of human hemoglobin in Saccharomyces cerevisiae[J]. Metabolic Engineering,2014,21:9−16. doi: 10.1016/j.ymben.2013.10.010
|
[11] |
ZHANG B H, ZHAO X R, WANG Z W, et al. Efficient secretory expression and purification of food-grade porcine myoglobin in Komagataella phaffii[J]. Journal of Agricultural and Food Chemistry,2021,69(35):10235−10245. doi: 10.1021/acs.jafc.1c04124
|
[12] |
ZHAO X R, ZHOU J W, DU G C, et al. Recent advances in the microbial synthesis of hemoglobin[J]. Trends in Biotechnology,2021,39(3):286−297. doi: 10.1016/j.tibtech.2020.08.004
|
[13] |
SUMAN S P, JOSEPH P. Myoglobin chemistry and meat color[J]. Annual Review of Food Science and Technology,2013,4(1):79−99. doi: 10.1146/annurev-food-030212-182623
|
[14] |
FRASER R, BROWN P O, KARR J, et al. Impossible Foods Inc. Methods and compositions for affecting the flavor and aroma profile of consumables: US, 9700067B2[P]. 2017−07−11.
|
[15] |
SHANKAR S, HOYT M A. Impossible Food Inc. Expression construction and methods of genetically engineering methylotrophic yeast: US, WO 2016/183163A1[P]. 2018−01−19.
|
[16] |
苏悦. 微生物高效表达异源豆血红蛋白的研究[D]. 杭州: 浙江大学, 2020
SU Y. Study on efficient expression of heterologous leghemoglobin in microorganisms[D]. Hangzhou: Zhejiang University, 2020.
|
[17] |
CURRELL D L, LEVIN J. The oxidative effect of bacterial lipopolysaccharide on native and cross-linked human hemoglobin as a function of the structure of the lipopolysaccharide[J]. Febs Journal,2010,269(18):4635−4640.
|
[18] |
MARTINEZ J L, LIU L F, PETRANOVIC D, et al. Engineering the oxygen sensing regulation results in an enhanced recombinant human hemoglobin production by Saccharomyces cerevisiae[J]. Biotechnology and Bioengineering,2015,112(1):181−188. doi: 10.1002/bit.25347
|
[19] |
MOULD R M, HOFMANN O M, BRITTAIN T. Production of human embryonic haemoglobin (Gower II) in a yeast expression system[J]. Biochemical Journal,1994,298(3):619−622. doi: 10.1042/bj2980619
|
[20] |
BUISSON N, LABBE-BOIS R. Flavohemoglobin expression and function in Saccharomyces cerevisiae: No relationship with respiration and complex response to oxidative stress[J]. Journal of Biological Chemistry,1998,273(16):9527. doi: 10.1074/jbc.273.16.9527
|
[21] |
OUTTEN C E, CULOTTA V C. Alternative start sites in the Saccharomyces cerevisiae GLR1 gene are responsible for mitochondrial and cytosolic isoforms of glutathione reductase[J]. The Journal of Biological Chemistry,2004,279(9):7785−7791. doi: 10.1074/jbc.M312421200
|
[22] |
STUART J A, HARPER J A, BRINDLE K M, et al. Physiological levels of mammalian uncoupling protein 2 do not uncouple yeast mitochondria[J]. The Journal of Biological Chemistry,2001,276(21):18633−9. doi: 10.1074/jbc.M011566200
|
[23] |
GROTE A, HILLER K, SCHEER M, et al. JCat: A novel tool to adapt codon usage of a target gene to its potential expression host[J]. Nucleic Acids Research, 2005, 33(Web Server issue): W526.
|
[24] |
安伯格. 酵母遗传学方法实验指南[M]. 第二版. 北京: 科学出版社, 2009: 98
ANBERG D C. Methods in yeast genetics[M]. Second edition. Beijing: Science Press, 2019: 98.
|
[25] |
JIN Q, PAN F, HU C F, et al. Secretory production of spider silk proteins in metabolically engineered Corynebacterium glutamicum for spinning into tough fibers[J]. Metabolic Engineering,2022,70:102−114. doi: 10.1016/j.ymben.2022.01.009
|
[26] |
MNAIMNEH S, DAVIERWALA A P, HAYNES J, et al. Exploration of essential gene functions via titratable promoter alleles[J]. Cell,2004,118(1):31−44. doi: 10.1016/j.cell.2004.06.013
|
[27] |
SUN J, SHAO Z Y, ZHAO H, et al. Cloning and characterization of a panel of constitutive promoters for applications in pathway engineering in Saccharomyces cerevisiae[J]. Biotechnology & Bioengineering,2012,109(8):2082−2092.
|
[28] |
邱玲, 钱俊佳, 康振, 等. 乙肝表面抗原在酿酒酵母中的异源表达[J]. 食品与生物技术学报,2015,34(9):906−913. [QIU L, QIAN J J, KANG C, et al. Heterologous expression of HBsAg in Saccharomyces Cerevisiae[J]. Journal of Food Science and Biotechnology,2015,34(9):906−913. doi: 10.3969/j.issn.1673-1689.2015.09.002
QIU L, QIAN J J, KANG C, et al. Heterologous expression of HBsAg in Saccharomyces Cerevisiae[J]. Journal of Food Science and Biotechnology, 2015, 34(9): 8. doi: 10.3969/j.issn.1673-1689.2015.09.002
|
[29] |
夏炳乐, 李敏莉, 刘清亮, 等. 烟草过氧化物酶Ⅰ的紫外-可见吸收光谱研究[J]. 光谱学与光谱分析,2004,24(7):830−833. [XIA C L, LI M L, LIU Q L, et al. Uv-vis absorption spectral characteristics of tobacco peroxidase Ⅰ from nicotiana tabacum[J]. Spectroscopy and Spectral Analysis,2004,24(7):830−833. doi: 10.3321/j.issn:1000-0593.2004.07.017
XIA C L, LI M L, LIU Q L, et al. Uv-vis absorption spectral characteristics of tobacco peroxidase Ⅰ from nicotiana tabacum[J]. Spectroscopy and Spectral Analysis, 2004, 24(7): 4. doi: 10.3321/j.issn:1000-0593.2004.07.017
|
[30] |
DOMINGUES E, BRILLET T, VASSEUR C, et al. Construction of a new polycistronic vector for over-expression and rapid purification of human hemoglobin[J]. Plasmid,2009,61(1):71−77. doi: 10.1016/j.plasmid.2008.09.006
|