Citation: | LIN Yanjun, LIU Yangjing, QU Xiaofeng, et al. Antioxidant Peptides Prepared by Enzymatic Hydrolysis of Whey Soy Proteins and Their Antioxidative Activities in Vitro[J]. Science and Technology of Food Industry, 2023, 44(20): 230−238. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022120012. |
[1] |
时玉强, 李顺秀, 马军, 等. 大豆乳清废水综合利用研究进展[J]. 中国油脂,2021,46(1):92−99. [SHI Y Q, LI S X, MA J, et al. Advance in comprehensive utilization of soybean whey wastewater[J]. China Oils And Fats,2021,46(1):92−99.
SHI Y Q, LI S X, MA J, et al. Advance in comprehensive utilization of soybean whey wastewater. China Oils And Fats, 2021, 46(1): 92-99.
|
[2] |
WANG Y, SERVENTI L. Sustainability of dairy and soy processing: A review on wastewater recycling[J]. Journal of Cleaner Production,2019,237:117821. doi: 10.1016/j.jclepro.2019.117821
|
[3] |
XU D, WANG W, WANG P, et al. Soy whey as a promising substrate in the fermentation of soy sauce: A study of microbial community and volatile compounds[J]. International Journal of Food Science & Technology,2021,56(11):5799−5811.
|
[4] |
GUAN X, WANG Q, LIN B, et al. Structural characterization of a soluble polysaccharide SSPS1 from soy whey and its immunoregulatory activity in macrophages[J]. International Journal of Biological Macromolecules,2022,217:131−141. doi: 10.1016/j.ijbiomac.2022.07.043
|
[5] |
LEE S Y, STUCKEY D C. Separation and biosynthesis of value-added compounds from food-processing wastewater: Towards sustainable wastewater resource recovery[J]. Journal of Cleaner Production, 2022: 131975.
|
[6] |
AZI F, TU C, MENG L, et al. Metabolite dynamics and phytochemistry of a soy whey-based beverage bio-transformed by water kefir consortium[J]. Food Chemistry,2021,342:128225. doi: 10.1016/j.foodchem.2020.128225
|
[7] |
XU Z, HAO N, LI L, et al. Valorization of soy whey wastewater: How epigallocatechin-3-gallate regulates protein precipitation[J]. ACS Sustainable Chemistry & Engineering,2019,7(18):15504−15513.
|
[8] |
CHUA J Y, LIU S Q. Soy whey: More than just wastewater from tofu and soy protein isolate industry[J]. Trends in Food Science & Technology,2019,91:24−32.
|
[9] |
孙薏雯, 邹雅婷, 马欣悦, 等. 大豆乳清废水的回收利用研究进展[J]. 食品工业科技,2022,43(1):451−457. [SUN Y W, ZOU Y T, MA X Y, et al. Research progress on recycling of soy whey wastewater[J]. Science and Technology of Food Industry,2022,43(1):451−457. doi: 10.13386/j.issn1002-0306.2020120174
SUN Y W, ZOU Y T, MA X Y, et al. Research progress on recycling of soy whey wastewater[J]. Science and Technology of Food Industry, 2022, 43(1): 451-457. doi: 10.13386/j.issn1002-0306.2020120174
|
[10] |
张强, 李伟华. 抗氧化肽的研究现状[J]. 食品与发酵工业,2021,47(2):298−304. [ZHANG Q, LI W H. Research progress of antioxidant peptides[J]. Food and Fermentation Industries,2021,47(2):298−304. doi: 10.13995/j.cnki.11-1802/ts.024999
ZHANG Q, LI W H. Research progress of antioxidant peptides[J]. Food and Fermentation Industries, 2021, 47(2): 298-304. doi: 10.13995/j.cnki.11-1802/ts.024999
|
[11] |
WONG F C, XIAO J, WANG S, et al. Advances on the antioxidant peptides from edible plant sources[J]. Trends in Food Science & Technology,2020,99:44−57.
|
[12] |
ABBASI S, MOSLEHISHAD M, SALAMI M. Antioxidant and alpha-glucosidase enzyme inhibitory properties of hydrolyzed protein and bioactive peptides of quinoa[J]. International Journal of Biological Macromolecules,2022,213:602−609. doi: 10.1016/j.ijbiomac.2022.05.189
|
[13] |
王升光, 于帅, 孟凡刚, 等. 酶法制备大豆肽的相对分子量分布及降压作用研究[J]. 食品工业科技,2018,39(1):46−51. [WANG S G, YU S, MENG F G, et al. Study on relative molecular weight distribution and depressor effect of soybean peptide prepared by enzymatic method[J]. Science and Technology of Food Industry,2018,39(1):46−51.
WANG S G, YU S, MENG F G, et al. Study on relative molecular weight distribution and depressor effect of soybean peptide prepared by enzymatic method. Science and Technology of Food Industry, 2018, 39(1): 46-51.
|
[14] |
WEN C, ZHANG J, ZHANG H, et al. Plant protein-derived antioxidant peptides: Isolation, identification, mechanism of action and application in food systems: A review[J]. Trends in Food Science & Technology,2020,105:308−322.
|
[15] |
MUKHIA S, KUMAR A, KUMAR R. Generation of antioxidant peptides from soy protein isolate through psychrotrophic Chryseobacterium sp. derived alkaline broad temperature active protease[J]. LWT-Food Science & Technology,2021,143:111152. doi: 10.1016/j.lwt.2021.111152
|
[16] |
尹乐斌, 周娟, 何平, 等. 乳酸菌发酵豆清液制备多肽及其体外抗氧化活性研究[J]. 食品与发酵工业,2020,46(11):131−137. [YIN L B, ZHOU J, HE P, et al. Preparation of peptide from soybean processing waste water by lactic acid bacteria fermentation and its antioxidant activity in vitro[J]. Food and Fermentation Industries,2020,46(11):131−137. doi: 10.13995/j.cnki.11-1802/ts.023857
YIN L B, ZHOU J, HE P, et al. Preparation of peptide from soybean processing waste water by lactic acid bacteria fermentation and its antioxidant activity in vitro[J]. Food and Fermentation Industries, 2020, 46(11): 131-137. doi: 10.13995/j.cnki.11-1802/ts.023857
|
[17] |
ZHU S, ZHENG Y, HE S, et al. Novel Zn-binding peptide isolated from soy protein hydrolysates: Purification, structure, and digestion[J]. Journal of Agricultural and Food Chemistry,2020,69(1):483−490.
|
[18] |
SPERONI F, MILESI V, AÑÓN M C. Interactions between isoflavones and soybean proteins: Applications in soybean-protein-isolate production[J]. LWT-Food Science & Technology,2010,43(8):1265−1270. doi: 10.1016/j.lwt.2010.03.011
|
[19] |
LI R, WU Z, WANG Y, et al. Pilot study of recovery of whey soy proteins from soy whey wastewater using batch foam fractionation[J]. Journal of Food Engineering,2014,142:201−209. doi: 10.1016/j.jfoodeng.2014.05.004
|
[20] |
吴悠, 曹冲, 杨玲, 等. 洋葱蛋白及多肽体外抗氧化活性研究[J]. 食品科技,2017,42(10):235−238. [WU Y, CAO C, YANG L, et al. The antioxidant activity of onion protein and polypeptide in vitro[J]. Food Science and Technology,2017,42(10):235−238. doi: 10.13684/j.cnki.spkj.2017.10.045
WU Y, CAO C, YANG L, et al. The antioxidant activity of onion protein and polypeptide in vitro [J]. Food Science and Technology, 2017, 42(10): 235-238. doi: 10.13684/j.cnki.spkj.2017.10.045
|
[21] |
梁星, 邓龙雪, 张宇, 等. 计算机模拟酶解制备驴乳清蛋白抗氧化肽的研究[J]. 天然产物研究与开发,2022,34(1):93−101. [LIANG X, DENG L X, ZHANG Y, et al. Preparation of donkey whey protein by computer simulation[J]. Natural Product Research and Development,2022,34(1):93−101.
LIANG X, DENG L X, ZHANG Y, et al. Preparation of donkey whey protein by computer simulation. Natural Product Research and Development, 2022, 34(1): 93-101.
|
[22] |
薛山, 肖夏, 陈舒怡, 等. 双响应面法结合Matlab法优化葡萄籽多酚提取工艺及羟自由基清除率评价[J]. 食品工业科技,2020,41(3):160−167. [XUE S, XIAO X, CHEN S Y, et al. Dual response surface method combined with matlab to optimize extraction process of grape seed polyphenols and the evaluation on its hydroxyl radical scavenging rate[J]. Science and Technology of Food Industry,2020,41(3):160−167. doi: 10.13386/j.issn1002-0306.2020.03.028
XUE S, XIAO X, CHEN S Y, et al. Dual response surface method combined with matlab to optimize extraction process of grape seed polyphenols and the evaluation on its hydroxyl radical scavenging rate[J]. Science and Technology of Food Industry, 2020, 41(3): 160-167. doi: 10.13386/j.issn1002-0306.2020.03.028
|
[23] |
CUI Q, SUN Y, CHENG J, et al. Effect of two-step enzymatic hydrolysis on the antioxidant properties and proteomics of hydrolysates of milk protein concentrate[J]. Food Chemistry,2022,366:130711. doi: 10.1016/j.foodchem.2021.130711
|
[24] |
XIANG Z, XUE Q, GAO P, et al. Antioxidant peptides from edible aquatic animals: Preparation method, mechanism of action, and structure-activity relationships[J]. Food Chemistry,2023,404B:134701.
|
[25] |
VALENCIA P, ESPINOZA K, CEBALLOS A, et al. Novel modeling methodology for the characterization of enzymatic hydrolysis of proteins[J]. Process Biochemistry,2015,50(4):589−597. doi: 10.1016/j.procbio.2014.12.028
|
[26] |
MAT D J L, CATTENOZ T, SOUCHON I, et al. Monitoring protein hydrolysis by pepsin using pH-stat: In vitro gastric digestions in static and dynamic pH conditions[J]. Food Chemistry,2018,239:268−275. doi: 10.1016/j.foodchem.2017.06.115
|
[27] |
段帅, 吴晓彤. 油莎豆粕抗氧化肽的制备及其稳定性研究[J]. 中国粮油学报,2023,38(1):80−89. [DUAN S, WU X T. Research on preparation and stability of antioxidant peptides from Cyperus esculentus meal[J]. Journal of the Chinese Cereals and Oils Association,2023,38(1):80−89.
DUAN S, WU X T. Research on preparation and stability of antioxidant peptides from Cyperus esculentus meal. Journal of the Chinese Cereals and Oils Association, 2023, 38(1): 80-89.
|
[28] |
王耀冉, 陈明杰, 查磊, 等. 响应面法优化草菇抗氧化肽的酶法制备工艺[J]. 食品工业科技,2022,43(15):227−233. [WANG Y R, CHEN M J, ZHA L, et al. Optimization of enzymatic preparation technology of antioxidant peptide from Volvariella volvacea by response surface methodology[J]. Science and Technology of Food Industry,2022,43(15):227−233. doi: 10.13386/j.issn1002-0306.2021110073
WANG Y R. , CHEN M J. , ZHA L. , et al. Optimization of enzymatic preparation technology of antioxidant peptide from Volvariella volvacea by response surface methodology[J]. Science and Technology of Food Industry, 2022, 43(15): 227−233. doi: 10.13386/j.issn1002-0306.2021110073
|
[29] |
SRINIVASAN B. A guide to the Michaelis-Menten equation: Steady state and beyond[J]. The FEBS Journal,2022,289(20):6086−6098. doi: 10.1111/febs.16124
|
[30] |
夏珍, 陈冰冰, 黄文, 等. 富硒牡蛎肽的制备及其抗氧化和血管紧张素转化酶抑制活性研究[J]. 食品与发酵工业,2023,49(2):120−128. [XIA Z, CHEN B B, HUANG W, et al. Preparation of selenium-enriched oyster peptides and their antioxidant and angiotensin converting enzyme inhibitory activities[J]. Food and Fermentation Industries,2023,49(2):120−128.
XIA Z, CHEN B B, HUANG W, et al. Preparation of selenium-enriched oyster peptides and their antioxidant and angiotensin converting enzyme inhibitory activities[J]. Food and Fermentation Industries, 2023, 49(2): 120-128.
|
[31] |
ZHANG Y, JING X, CHEN Z, et al. Purification and identification of antioxidant peptides from millet gliadin treated with high hydrostatic pressure[J]. LWT-Food Science & Technology,2022,164:113654. doi: 10.1016/j.lwt.2022.113654
|
[32] |
LI Z, LU D, GAO X. Optimization of mixture proportions by statistical experimental design using response surface method-A review[J]. Journal of Building Engineering,2021,36:102101. doi: 10.1016/j.jobe.2020.102101
|
[33] |
JAGABA A H, KUTTY S R M, NAUSHAD M, et al. Removal of nutrients from pulp and paper biorefinery effluent: Operation, kinetic modelling and optimization by response surface methodology[J]. Environmental Research,2022,214:114091. doi: 10.1016/j.envres.2022.114091
|
[34] |
贾俊强, 马海乐, 曲文娟, 等. 超声预处理大米蛋白制备抗氧化肽[J]. 农业工程学报,2008,24(8):288−293. [JIANG J Q, MA H L, QU W J, et al. Ultrasonic pretreatment for preparation of antioxidant peptides from rice protein[J]. Transactions of the CSAE,2008,24(8):288−293.
JIANG J Q, MA H L, QU W J, et al. Ultrasonic pretreatment for preparation of antioxidant peptides from rice protein [J]. Transactions of the CSAE, 2008, 24(8): 288-293.
|
[1] | ZHOU Junping, XU Yujuan, WEN Jing, WU Jijun, YU Yuanshan, LI Chuyuan, WENG Shaoquan, ZHAO Min. Research Progress of γ-Aminobutyric Acid (GABA)[J]. Science and Technology of Food Industry, 2024, 45(5): 393-401. DOI: 10.13386/j.issn1002-0306.2023050004 |
[2] | LIANG Jingyi, GUO Fan, ZHAO Ke, WANG Hongfei, XU Feng. Effect of Exogenous γ-Aminobutyric Acid on the Quality and γ-Aminobutyric Acid Metabolism of Fresh-cut Pumpkins[J]. Science and Technology of Food Industry, 2022, 43(19): 385-392. DOI: 10.13386/j.issn1002-0306.2022010017 |
[3] | Jing LI, Xinru REN, Yaqi LU, Jian SUN, Xia LI, Yang SHAN. Effect of γ-Aminobutyric Acid on Postharvest Quality of Lentinus edodes[J]. Science and Technology of Food Industry, 2021, 42(8): 301-306. DOI: 10.13386/j.issn1002-0306.2020080215 |
[4] | LI Ke, YU Lan-xiu, LIU Xiao-yu, LIU Dong, ZHANG Wei-guang. Research Progress on Improving Sleep Mechanism of γ-aminobutyric Acid[J]. Science and Technology of Food Industry, 2019, 40(14): 353-358. DOI: 10.13386/j.issn1002-0306.2019.14.058 |
[5] | WANG Kai-kai, SUN Meng, SONG Jia-min, WANG Hong-fei, SHAO Xing-feng, LI He-sheng, ZHOU Wen-hua, XU Feng. Research Progress in the Formation Mechanism and Accumulation Methods of γ-Aminobutyric Acid(GABA)[J]. Science and Technology of Food Industry, 2018, 39(14): 323-329. DOI: 10.13386/j.issn1002-0306.2018.14.061 |
[6] | FANG Fang, WANG Dong-hui, WANG Yan, ZHANG Li-jing, LI Shu-ying, XING Cen-can, YANG Ying, WANG Feng-zhong. Research progress on γ-aminobutyric acid accumulation in soybean and its product development[J]. Science and Technology of Food Industry, 2018, 39(9): 346-351. DOI: 10.13386/j.issn1002-0306.2018.09.061 |
[7] | YIN Yong-qi, WANG Jin-feng, FANG Wei-ming, HENG Guo, WANG Hui. Development of nutritional noodles with high γ-aminobutyric acid[J]. Science and Technology of Food Industry, 2018, 39(3): 148-152. DOI: 10.13386/j.issn1002-0306.2018.03.030 |
[8] | JIANG Rui, LI Ya-ting, OUYANG Peng-ling, SONG Li-hua. Progress of γ-aminobutyric acid(GABA) enrichment process in cereals[J]. Science and Technology of Food Industry, 2018, 39(1): 347-352. DOI: 10.13386/j.issn1002-0306.2018.01.064 |
[9] | YIN Wen-zhi, ZHANG Hua-shan, YU Tian-yi, XIONG Hai-rong. Screening and identification of strains for producing γ- aminobutyric acid[J]. Science and Technology of Food Industry, 2015, (19): 142-146. DOI: 10.13386/j.issn1002-0306.2015.19.021 |
[10] | BAI Qing-yun, CHEN Qian-qian, YAN Huang-qian, WU You, ZHAO Li, BI Yan-hong. Optimization of culture conditions for γ-aminobutyric acid accumulation in potato using hypoxia aerating[J]. Science and Technology of Food Industry, 2015, (07): 241-245. DOI: 10.13386/j.issn1002-0306.2015.07.043 |
1. |
姜秀杰,张家瑜,李莹,迟晓星,孙东波,曹冬梅,张东杰. 富含γ-氨基丁酸的萌发红小豆对T2DM小鼠肠道菌群的影响. 食品工业科技. 2024(12): 151-159 .
![]() |