XIE Xiaofen, HU Guangxian, PAN Lu, et al. Effect of Polygonatum sibiricum Extract in Improving the Organ Function of D-Galactose-induced Aging Mice and Its Mechanism[J]. Science and Technology of Food Industry, 2023, 44(18): 449−457. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022110220.
Citation: XIE Xiaofen, HU Guangxian, PAN Lu, et al. Effect of Polygonatum sibiricum Extract in Improving the Organ Function of D-Galactose-induced Aging Mice and Its Mechanism[J]. Science and Technology of Food Industry, 2023, 44(18): 449−457. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022110220.

Effect of Polygonatum sibiricum Extract in Improving the Organ Function of D-Galactose-induced Aging Mice and Its Mechanism

More Information
  • Received Date: November 20, 2022
  • Available Online: July 12, 2023
  • Objective: The purpose of this study was to explore the protective effects of Polygonatum sibiricum extract (PSE) on the important organs of D-galactose (D-gal)-induced aging mice and its potential molecular mechanisms. Methods: The mice were randomly divided into five groups (n=10): control group, D-gal (500 mg/kg) group, low-PSE dose (0.5 g/kg) group, medium-PSE dose (1 g/kg) group, and high-PSE dose (2 g/kg) group. The organ indices (thymus, spleen, liver, and kidney) were detected. The levels of creatine kinase (CK), creatine kinase isoenzyme (CK-MB), alanine aminotransferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), uric acid (UA), urea (UREA), creatinine (CREA), urea–creatinine ratio (BUN/Scr), and glomerular filtration rate (eGFR) in serum were measured. Pathological changes in the skin, liver, kidney, heart, brain, and lung of mice in different groups were analyzed by HE and Masson staining. The expressions of p53, p16, p21, RB, HO-1, Nrf2, and Keap1 mRNA in the liver, kidney, heart, and brain of each group of mice were detected by real-time PCR. Results: The thymus, spleen, liver, and kidney indices were increased in each PSE treatment group compared with those in the D-gal group (P<0.05). Moreover, in each treatment group, PSE decreased (P<0.05) the levels of CK, CK-MB, ALT, AST, ALP, UA, UREA, CREA, and BUN/Scr in mouse serum and increased the level of eGFR (P<0.05). HE and Masson staining showed that PSE could reduce the pathological damage caused by D-gal to the vital organs of mice. Compared with the blank group, the model group presented increased expression levels of p53, p16, p21, RB, and Keap1 mRNA in the liver, kidney, heart, and brain (P<0.05) and decreased HO-1 and Nrf2 mRNA (P<0.05). Compared with the D-gal group, mice in each PSE treatment group exhibited decreased mRNA levels of p53, p16, p21, RB, and Keap1 in the liver, kidney, heart, and brain tissues (P<0.05) and increased mRNA levels of HO-1 and Nrf2 (P<0.05). Conclusion: PSE has anti-aging effects, and its mechanism may be related to its inhibition of the p53/p21, p16-RB, and Keap1/Nrf2/HO-1 pathways.
  • [1]
    原新, 金牛. 世界人口负增长的趋势展望与影响应对[J]. 河北大学学报,2021,46(1):82−91. [YUAN Xin, JIN Niu. Prospects and countermeasures of the global negative population growth[J]. Journal of Hebei University,2021,46(1):82−91.

    YUAN Xin, JIN Niu. Prospects and countermeasures of the global negative population growth[J]. Journal of Hebei University, 2021, 46(1): 82-91.
    [2]
    United Nations. World population ageing 2019: Highlights. New York: UN, 2019.
    [3]
    FEEHAN J, TRIPODI N, APOSTOPOULOS V. The twilight of the immune system: The impact of immunosenescence in aging[J]. Maturitas,2021,147:17−13.
    [4]
    王培昌. 细胞衰老与衰老相关疾病[J]. 中华检验医学杂志,2021,44(1):7−11. [WANG Peichang. Cell aging and aging related diseases[J]. Chinese Journal of Laboratory Medicine,2021,44(1):7−11. doi: 10.3760/cma.j.cn114452-20201030-00809

    WANG Peichang. Cell aging and aging related diseases[J]. Chinese Journal of Laboratory Medicine, 2021, 44(1): 7-11. doi: 10.3760/cma.j.cn114452-20201030-00809
    [5]
    MA S, SUN S, GENG L, et al. Caloric restriction reprograms the single-cell transcriptional landscape of Rattus norvegicus aging[J]. Cell,2020,180(5):984−1001. doi: 10.1016/j.cell.2020.02.008
    [6]
    BARARDO D, THORNTON D, THOPPIL H, et al. The drug age database of aging-related drugs[J]. Aging Cell,2017,16(3):594−597. doi: 10.1111/acel.12585
    [7]
    国家药典委员会. 中华人民共和国药典: 一部[M]. 北京: 中国医药科技出版社, 2020: 319

    Chinese Pharmacopoeia Commission. Pharmacopoeia of People’s Republic of China: subdivision[M]. Beijing: China Medical Science and Technology Press, 2020: 319.
    [8]
    赵祺, 任仙樱, 姜程曦. 九华黄精本草考证[J]. 中草药,2018,49(17):4184−4188. [ZHAO Qi, REN Xianying, JIANG Chengxi. Herbal textual research of Jiuhua Polygonatum cyrtonema[J]. Chinese Traditional and Herbal Drugs,2018,49(17):4184−4188.

    ZHAO Qi, REN Xianying, JIANG Chengxi. Herbal textual research of Jiuhua Polygonatum cyrtonema[J]. Chinese Traditional and Herbal Drugs, 2018, 49(17): 4184-4188.
    [9]
    REN H M, DENG Y L, ZHANG J L, et al. Research progress on processing history evolution, chemical components and pharmacological effects of Polygonati Rhizoma[J]. China journal of Chinese materia medica,2020,45(17):4163−4182.
    [10]
    CHEN Z, LIU J, KONG X, et al. Characterization and Immunological Activities of Polysaccharides from Polygonatum sibiricum[J]. Biological and Pharmaceutical Bulletin,2020,43(6):959−967. doi: 10.1248/bpb.b19-00978
    [11]
    ZHAO X, PATIL S, QIAN A, et al. Bioactive compounds of Polygonatum sibiricum-therapeutic effect and biological activity[J]. EndocrMetab Immune Disord Drug Targets,2022,22(1):26−37. doi: 10.2174/1871530321666210208221158
    [12]
    李亚霖, 周芳, 曾婷, 等. 药用黄精化学成分与活性研究进展[J]. 中医药导报,2019,25(5):86−89. [LI Yalin, ZHOU Fang, ZENG Ting, et al. Research progress on chemical components and activities of Huangjing[J]. Guiding Journal of Traditional Chinese Medicine,2019,25(5):86−89.

    LI Yalin, ZHOU Fang, ZENG Ting, et al. Research progress on chemical components and activities of Huangjing[J]. Guiding Journal of Traditional Chinese Medicine, 2019, 25(5): 86-89.
    [13]
    ZHAO P, ZHAO C, LI X, et al. The genus Polygonatum: A review of ethnopharmacology, phytochemistry and pharmacology[J]. Journal of Ethnopharmacology,2018,214:274−291. doi: 10.1016/j.jep.2017.12.006
    [14]
    SHU G, XU D, ZHAO J, et al. Protective effect of Polygonatum sibiricum polysaccharide on cyclophosphamide-induced immunosuppression in chickens[J]. Research in Veterinary Science,2021,135:96−105. doi: 10.1016/j.rvsc.2020.12.025
    [15]
    LIU B, TANG Y, SONG Z, et al. Polygonatum sibiricum F. Delaroche polysaccharide ameliorates HFD-induced mouse obesity via regulation of lipid metabolism and inflammatory response[J]. Spandidos Publications,2021,24(1):501. doi: 10.3892/mmr.2021.12140
    [16]
    马凤巧, 张海艳. 黄精对衰老大鼠学习记忆能力的改善及机制[J]. 中国老年学杂志,2010,30(15):2191−2192. [MA Fengqiao, ZHANG Haiyan. Improvement and mechanism of Polygonatum sibiricum on learning and memory ability in aging rats[J]. Chinese Journal of Gerontology,2010,30(15):2191−2192.

    MA Fengqiao, ZHANG Haiyan. Improvement and mechanism of Polygonatum sibiricum on learning and memory ability in aging rats[J]. Chinese Journal of Gerontology, 2010, 30(15): 2191-2192.
    [17]
    XIAOWEI C, WEI W, HONG G, et al. Review of Polygonatum sibiricum: A new natural cosmetic ingredient[J]. Pharmazie,2019,74(9):513−519.
    [18]
    ZHANG H, CAO Y, CHEN L, et al. A polysaccharide from Polygonatum sibiricum attenuates amyloid-β-induced neurotoxicity in PC12 cells[J]. Carbohydrate Polymers,2015,117:879−886. doi: 10.1016/j.carbpol.2014.10.034
    [19]
    CUI X, WANG S, CAO H, et al. A Review: The bioactivities and pharmacological applications of Polygonatum sibiricum polysaccharides[J]. Molecules,2018,23(5):1170. doi: 10.3390/molecules23051170
    [20]
    秦臻, 韦正新, 许键炜. 黄精对衰老大鼠内皮祖细胞DNA损伤检测点ATM/ATR通路的影响[J]. 中药新药与临床药理,2019,30(5):529−534. [QIN Zhen, WEI Zhengxin, XU Jianwei. The Effect of Polygonati rhizoma on DNA damage checkpoint ATM/ATR of endothelail progenitor cells in aged rats[J]. Traditional Chinese Drug Research and Clinical Pharmacology,2019,30(5):529−534.

    QIN Zhen, WEI Zhengxin, XU Jianwei. The Effect of Polygonati rhizoma on DNA damage checkpoint ATM/ATR of endothelail progenitor cells in aged rats[J]. Traditional Chinese Drug Research and Clinical Pharmacology, 2019, 30(5): 529-534.
    [21]
    秦臻, 韦正新, 宰青青, 等. 黄精降低活性氧水平促进衰老内皮祖细胞功能的研究[J]. 中国药理学通报,2019,35(1):123−127. [QIN Zhen, WEI Zhengxin, ZAI Qingqing et al. Effect of Rhizoma Polygonati on functional activity of endothelial progenitor cells to delay senescense via decrease of ROS[J]. Chinese Pharmacological Bulletin,2019,35(1):123−127.

    QIN Zhen, WEI Zhengxin, ZAI Qingqing et al. Effect of Rhizoma Polygonati on functional activity of endothelial progenitor cells to delay senescense via decrease of ROS[J]. Chinese Pharmacological Bulletin, 2019, 35(1): 123-127.
    [22]
    REN Y, AI J, LIU X, et al. Anticoagulant active ingredients identification of total saponin extraction of different Panax medicinal plants based on grey relational analysis combined with UPLC-MS and molecular docking[J]. Ethnopharmacol,2020,260:112955. doi: 10.1016/j.jep.2020.112955
    [23]
    DU H M, WANG Y J, LIU X, et al. Defective central immune tolerance induced by high-dose D-galactose resembles aging[J]. Biochemistry,2019,84(6):617−626.
    [24]
    刘阳, 许悦, 王语嫣, 等. 紫苏梗乙酸乙酯提取物对D-半乳糖衰老模型小鼠的抗衰老作用研究[J]. 中华中医药学刊,2022,40(9):52−55. [LIU Yang, XU Yue, WANG Yuyan, et al. Anti-senescence effect of ethyl acetate extract from Zisugeng (Caulis Perillae) on D-galactose aging model mice[J]. Chinese Archives of Traditional Chinese Medicine,2022,40(9):52−55.

    LIU Yang, XU Yue, WANG Yuyan, et al. Anti-senescence effect of ethyl acetate extract from Zisugeng (Caulis Perillae) on D-galactose aging model mice[J]. Chinese Archives of Traditional Chinese Medicine, 2022, 40(9): 52-55.
    [25]
    KHAN S S, SINGER B D, VAUGHAN D E. Molecular and physiological manifestations and measurement of aging in humans[J]. Aging Cell,2017,16(4):624−633. doi: 10.1111/acel.12601
    [26]
    MAYNARD S J, MENOWN I B, ADGEY A A. Troponin T or troponin I as cardiac markers in ischaemic heart disease[J]. Heart,2000,83(4):371−373. doi: 10.1136/heart.83.4.371
    [27]
    曾瑾, 崔凤娟, 王海珍, 等. 阿霉素诱导和腹主动脉缩窄术复制大鼠慢性心力衰竭模型的比较[J]. 皖南医学院学报,2014,33(3):189−192. [ZENG Jin, CUI Fengjuan, WANG Haizhen, et al. Comparison of the two heart failure models in rats by abdominal aorta constriction and intraperitoneal injection of adriamycin[J]. Journal of Wannan Medical College,2014,33(3):189−192.

    ZENG Jin, CUI Fengjuan, WANG Haizhen, et al. Comparison of the two heart failure models in rats by abdominal aorta constriction and intraperitoneal injection of adriamycin[J]. Journal of Wannan Medical College, 2014, 33(3): 189-192.
    [28]
    SUN F, ZUO Y Z, GE J, et al. Transport stress induces heart damage in newly hatched chicks via blocking the cytoprotective heat shock response and augmenting nitric oxide production[J]. Poultry Science,2018,97(8):2638−2646. doi: 10.3382/ps/pey146
    [29]
    储莉, 刘伏元, 闻伟, 等. CK-MB、cTnI 联合Fib对老年慢性心力衰竭患者诊断和预后的价值[J]. 中国老年学杂志,2021,41(14):2927−2931. [CHU Li, LIU Fuyuan, WEN Wei, et al. Diagnostic and prognostic value of CK-MB, cTnI, and Fib in elderly patients with chronic heart failure[J]. Chinese Journal of Gerontology,2021,41(14):2927−2931.

    CHU Li, LIU Fuyuan, WEN Wei, et al. Diagnostic and prognostic value of CK-MB, cTnI, and Fib in elderly patients with chronic heart failure[J]. 2021, 41(14): 2927-2931.
    [30]
    OJHA S, GOYAL S, SHARAM C, et al. Cardioprotective effect of lycopene against isoproterenol-induced myocardial infarction in rats[J]. Human and Experimental Toxicology,2013,32(5):492−503. doi: 10.1177/0960327112454890
    [31]
    NYBLOM H, BERGGREN U, BALLDIN J, et al. High AST/ALT ratio may indicate advanced alcoholic liver disease rather than heavy drinking[J]. Alcohol and Alcoholism,2004,39(4):336−339. doi: 10.1093/alcalc/agh074
    [32]
    NYBLOM H, BJORNSSON E, SIMREN M, et al. The AST/ALT ratio as an indicator of cirrhosis in patients with PBC[J]. Liver International,2006,26(7):840−845. doi: 10.1111/j.1478-3231.2006.01304.x
    [33]
    XIE C, JINGJING W, LII X, et al. Protective effect of SKLB010 against D-galactosamine/lipopolysaccha-ride-induced acute liver failure via nuclear factor-kappaB signaling pathway in macrophages[J]. International Immunopharmacology,2014,21:261−268. doi: 10.1016/j.intimp.2014.05.012
    [34]
    CHEN X L, HAN Y D, WANG H. Relations of hepatic steatosis with liver functions, inflammations, glucolipid metabolism in chronic hepatitis B patients[J]. European Review for Medical and Pharmacological,2018,22:5640−5646.
    [35]
    宗艺, 王加. 血清5’NT、LAP、ALP与GGT检测在肝脏疾病中的临床价值[J]. 医学食疗与健康,2022,20(16):193−195. [ZONG Yi, WANG Jia. The clinical value of serum 5'NT, LAP, ALP, and GGT in liver disease[J]. Medical Diet and Health,2022,20(16):193−195.

    ZONG Yi, WANG Jia. The clinical value of serum 5'NT, LAP, ALP, and GGT in liver disease[J]. Medical Diet and Health, 2022, 20(16): 193-195.
    [36]
    ZHANG Z F, LU J, ZHENG Y L, et al. Purple sweet potato color protects mouse liver against d-galactose-induced apoptosis via inhibiting caspase-3 activation and enhancing PI3K/Akt pathway[J]. Food and Chemical Toxicology,2010,48(8-9):2500−2507. doi: 10.1016/j.fct.2010.06.023
    [37]
    WANG A, XIAO Z, ZHOU L, et al. The protective effect of atractylenolide I on systemic inflammation in the mouse model of sepsis created by cecal ligation and puncture[J]. Pharmaceutical Biology,2016,54(1):146−150. doi: 10.3109/13880209.2015.1024330
    [38]
    李艳菊, 李琴山, 田硕, 等. 天冬总皂苷对D-半乳糖致衰老大鼠肾脏p53基因表达的影响[J]. 中国老年学杂志,2012,32(18):3961−3963. [LI Yanju, LI Qinshan, TIAN Shuo. The effects of total asparagine saponins on p53 gene expression in aging rats induced by D-galactose[J]. Chinese Journal of Gerontology,2012,32(18):3961−3963.

    LI Yanju, LI Qinshan, TIAN Shuo. The effects of total asparagine saponins on p53 gene expression in aging rats induced by D-galactose[J]. Chinese Journal of Gerontology, 2012, 32(18): 3961-3963.
    [39]
    JUNG S W, KIM S M, KIM Y G, et al. Uric acid and inflammation in kidney disease[J]. American Journal of Physiology-Renal Physiology,2020,318:1327−1340. doi: 10.1152/ajprenal.00272.2019
    [40]
    AMARA I, SAIAH A, TIMOUMI R, et al. Effect of di(2-ethylhexyl) phthalate on Nrf2-regulated glutathione homeostasis in mouse kidney[J]. Cell Stress Chaperones,2020,25(6):919−928. doi: 10.1007/s12192-020-01127-8
    [41]
    GAGLIANO N, GRIZZI F, ANNONI G. Mechanisms of aging and liver functions[J]. Dig Dis,2007,25(2):118−123. doi: 10.1159/000099475
    [42]
    PROKSCH E, SEGGER D, DEGWERT J, et al. Oral supplementation of specific collagen peptides has beneficial effects on human skin physiology: A double-blind, placebo-controlled study[J]. Skin Pharmacology and Physiology,2014,27(1):47−55. doi: 10.1159/000351376
    [43]
    MUNOZ-ESPIN D, SERRANO M. Cellular senescence: From physiology to pathology[J]. Nature Reviews Molecular Cell Biology,2014,15(7):482−496. doi: 10.1038/nrm3823
    [44]
    ZHANG J, CAO M, DONG J, et al. ABRO1 suppresses tumourigenesis and regulates the DNA damage response by stabilizing p53[J]. Nature Communications,2014,5(1):5059. doi: 10.1038/ncomms6059
    [45]
    DAVALOS A R, COPPE J P, CAMPISI J, et al. Senescent cells as a source of inflammatory factors for tumor progression[J]. Cancer and Metastasis Reviews,2010,29(2):273−283. doi: 10.1007/s10555-010-9220-9
    [46]
    GIACINTI C, GIORDANO A. RB and cell cycle progression[J]. Oncogene,2006,25(38):5220−5227. doi: 10.1038/sj.onc.1209615
    [47]
    DESHMUKH P, UNNI S, KRISHNAPPA G, et al. The Keap1-Nrf2 pathway: promising therapeutic target to counteract ROS-mediated damage in cancers and neurodegenerative diseases[J]. Biophysical Reviews,2017,9(1):41−56. doi: 10.1007/s12551-016-0244-4
    [48]
    YAMAZAKI H, TANJI K, WAKABAYASHI K, et al. Role of the Keap1/Nrf2 pathway in neurodegenerative diseases[J]. Pathology International,2015,65(5):210−219. doi: 10.1111/pin.12261
    [49]
    NGUYEN T, NIOI P, PICKETT C B. The Nrf2-antioxidant response element signaling pathway and its activation by oxidative stress[J]. Journal of Biological Chemistry,2009,284(20):13291−13295. doi: 10.1074/jbc.R900010200
    [50]
    SHUKLA K, PAL P B, SONOWAL H, et al. Aldose reductase inhibitor protects against hyperglycemic stress by activating Nrf2-dependent antioxidant proteins[J]. Journal of Diabetes Research,2017,2017:6785852.
  • Cited by

    Periodical cited type(9)

    1. 贾鑫,高鹏,周瑞,徐攀,王丹,黄敏,孟爱莲,张雁君,吴舸洋. 基于纯培养法结合高通量测序技术解析胀袋辐照凤爪中的微生物多样性. 食品与发酵工业. 2024(12): 135-141 .
    2. 钟娟,何静,陈晓珍,杨涛. 高通量测序技术分析浓香型白酒酒糟自然堆积发酵过程的微生物多样性. 酿酒. 2023(06): 50-56 .
    3. 姚晓红,孙宏,周航海,汤江武,吴逸飞,王新,沈琦. 发酵时间对西兰花茎叶发酵饲料的营养成分和发酵品质及微生物群落多样性的影响. 中国畜牧杂志. 2023(11): 259-264 .
    4. 李思雨,杜贺超,包佳亮,姚宏亮,蒋加进. 贵州腌鱼微生物多样性和益生特性分析. 农产品加工. 2023(24): 66-71 .
    5. 罗爱国,郗鑫瑞,郑同庆,杨兆艳,田艳花,马晓丽,赵红梅. 基于Illumina MiSeq高通量测序分析清香型白酒酒糟微生物群落多样性. 中国酿造. 2022(01): 98-102 .
    6. 刘都,张利鹏. 食品安全中微生物的危害及防治策略分析. 食品安全导刊. 2022(22): 13-15 .
    7. 罗爱国,王家彦,郝建伟,郭春燕,时晓丽,杨博雯,赵红梅. 山西老陈醋丟糟微生物群落多样性分析. 中国调味品. 2022(09): 53-58 .
    8. 孙胜敏,张宇鑫,王一村,周莉莉,高静静,李娜,才美佳,赵彤彤. 番茄酱中关键致腐菌快速筛选方法的建立. 中国果菜. 2022(08): 64-69 .
    9. 田存章,贺新平,万嘉欣,姬国杰,周红伟,崔靖,吴文龙. 怀菊不同部位内生细菌多样性分析. 农业与技术. 2021(17): 31-33 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (125) PDF downloads (34) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return